303967: CF763C. Timofey and remoduling
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Timofey and remoduling
题意翻译
给出 $m, n$($m$ 为质数),以及一个长度为 $n$ 的数列 $\{a_n\}$。请你任意重排 $a_i$ 的顺序,使得 $a_i$ 是一个 $\bmod\ m$ 意义下的等差数列。 即,存在非负整数 $0 \leq x, d < m$ 使得对于 $1 \leq i \leq n$ 都满足 $a_i = (x + (i - 1)d) \bmod m$。 如果可行,输出任意一组 $x, d$ 的值;否则输出 $-1$。题目描述
Little Timofey likes integers a lot. Unfortunately, he is very young and can't work with very big integers, so he does all the operations modulo his favorite prime $ m $ . Also, Timofey likes to look for arithmetical progressions everywhere. One of his birthday presents was a sequence of distinct integers $ a_{1},a_{2},...,a_{n} $ . Timofey wants to know whether he can rearrange the elements of the sequence so that is will be an arithmetical progression modulo $ m $ , or not. Arithmetical progression modulo $ m $ of length $ n $ with first element $ x $ and difference $ d $ is sequence of integers $ x,x+d,x+2d,...,x+(n-1)·d $ , each taken modulo $ m $ .输入输出格式
输入格式
The first line contains two integers $ m $ and $ n $ ( $ 2<=m<=10^{9}+7 $ , $ 1<=n<=10^{5} $ , $ m $ is prime) — Timofey's favorite prime module and the length of the sequence. The second line contains $ n $ distinct integers $ a_{1},a_{2},...,a_{n} $ ( $ 0<=a_{i}<m $ ) — the elements of the sequence.
输出格式
Print -1 if it is not possible to rearrange the elements of the sequence so that is will be an arithmetical progression modulo $ m $ . Otherwise, print two integers — the first element of the obtained progression $ x $ ( $ 0<=x<m $ ) and its difference $ d $ ( $ 0<=d<m $ ). If there are multiple answers, print any of them.
输入输出样例
输入样例 #1
17 5
0 2 4 13 15
输出样例 #1
13 2
输入样例 #2
17 5
0 2 4 13 14
输出样例 #2
-1
输入样例 #3
5 3
1 2 3
输出样例 #3
3 4