304426: CF846C. Four Segments
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Four Segments
题意翻译
给定长度为n的序列a,求出三个点i,j,k(0<=i<=j<=k<=n),使得a[1]+...+a[i]-a[i+1]-...-a[j]+a[j+1]+...+a[k]-a[k+1]-...-a[n]最大题目描述
You are given an array of $ n $ integer numbers. Let $ sum(l,r) $ be the sum of all numbers on positions from $ l $ to $ r $ non-inclusive ( $ l $ -th element is counted, $ r $ -th element is not counted). For indices $ l $ and $ r $ holds $ 0<=l<=r<=n $ . Indices in array are numbered from $ 0 $ . For example, if $ a=[-5,3,9,4] $ , then $ sum(0,1)=-5 $ , $ sum(0,2)=-2 $ , $ sum(1,4)=16 $ and $ sum(i,i)=0 $ for each $ i $ from $ 0 $ to $ 4 $ . Choose the indices of three delimiters $ delim_{0} $ , $ delim_{1} $ , $ delim_{2} $ ( $ 0<=delim_{0}<=delim_{1}<=delim_{2}<=n $ ) and divide the array in such a way that the value of $ res=sum(0,delim_{0}) $ - $ sum(delim_{0},delim_{1}) $ + $ sum(delim_{1},delim_{2}) $ - $ sum(delim_{2},n) $ is maximal. Note that some of the expressions $ sum(l,r) $ can correspond to empty segments (if $ l=r $ for some segment).输入输出格式
输入格式
The first line contains one integer number $ n $ ( $ 1<=n<=5000 $ ). The second line contains $ n $ numbers $ a_{0},a_{1},...,a_{n-1} $ ( $ -10^{9}<=a_{i}<=10^{9} $ ).
输出格式
Choose three indices so that the value of $ res $ is maximal. If there are multiple answers, print any of them.
输入输出样例
输入样例 #1
3
-1 2 3
输出样例 #1
0 1 3
输入样例 #2
4
0 0 -1 0
输出样例 #2
0 0 0
输入样例 #3
1
10000
输出样例 #3
1 1 1