304771: CF910A. The Way to Home
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
The Way to Home
题意翻译
## 题目描述 一只青蛙现在在一个数轴上,它现在要从点 $1$ 跳到点 $n$ ,它每次可以向右跳不超过 $d$ 个单位。比如,它可以从点 $x$ 跳到点 $x+a$ $( 1<=a<=d )$ 。特别的,青蛙只能在有百合花的点上停留。保证点 $1$ 和点 $n$ 之间有一些点有百合花。请输出青蛙到达点 $n$ 的最小跳跃次数。 ## 输入输出格式 ### 输入格式 输入的第一行包括两个正整数 $n$ 和 $d$ $( 2<=n<=100, 1<=d<=n-1 )$ 。 输入的第二行是一个长度为 $n$ 的无空格字符串,由`0`和`1`组成,表示哪些点上有百合花(`1`表示有)。保证点 $1$ 和点 $n$ 有百合花。 ### 输出格式 输出青蛙的最小跳跃次数。如果它不可能到达,输出-1。 ## 输入输出样例 略 ## 说明 在样例1中,青蛙可以从点 $1$ 跳3个单位到点 $4$ ,再从点 $4$ 跳4个单位到点 $8$ . 在样例2中,青蛙不能到达点 $n$ ,因为它至少需要跳3个单位,但它最多只能跳2个单位。 由 @星烁晶熠辉 提供翻译题目描述
A frog lives on the axis $ Ox $ and needs to reach home which is in the point $ n $ . She starts from the point $ 1 $ . The frog can jump to the right at a distance not more than $ d $ . So, after she jumped from the point $ x $ she can reach the point $ x+a $ , where $ a $ is an integer from $ 1 $ to $ d $ . For each point from $ 1 $ to $ n $ is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points $ 1 $ and $ n $ . Determine the minimal number of jumps that the frog needs to reach home which is in the point $ n $ from the point $ 1 $ . Consider that initially the frog is in the point $ 1 $ . If the frog can not reach home, print -1.输入输出格式
输入格式
The first line contains two integers $ n $ and $ d $ ( $ 2<=n<=100 $ , $ 1<=d<=n-1 $ ) — the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string $ s $ of length $ n $ , consisting of zeros and ones. If a character of the string $ s $ equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string $ s $ equal to one.
输出格式
If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point $ n $ from the point $ 1 $ .
输入输出样例
输入样例 #1
8 4
10010101
输出样例 #1
2
输入样例 #2
4 2
1001
输出样例 #2
-1
输入样例 #3
8 4
11100101
输出样例 #3
3
输入样例 #4
12 3
101111100101
输出样例 #4
4