304777: CF911D. Inversion Counting
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Inversion Counting
题意翻译
* 给定正整数 $n$ 和一个 $1$ 到 $n$ 的全排列。 * 共 $m$ 次操作,每次对区间 $[l,r]$ 进行翻转,并询问操作后序列逆序对个数的奇偶性。若个数为奇数则输出 `odd`,若个数为偶数则输出 `even`。 * $1\leq n\leq 1500$,$1\leq m\leq 2\times 10^5$。题目描述
A permutation of size $ n $ is an array of size $ n $ such that each integer from $ 1 $ to $ n $ occurs exactly once in this array. An inversion in a permutation $ p $ is a pair of indices $ (i,j) $ such that $ i>j $ and $ a_{i}<a_{j} $ . For example, a permutation $ [4,1,3,2] $ contains $ 4 $ inversions: $ (2,1) $ , $ (3,1) $ , $ (4,1) $ , $ (4,3) $ . You are given a permutation $ a $ of size $ n $ and $ m $ queries to it. Each query is represented by two indices $ l $ and $ r $ denoting that you have to reverse the segment $ [l,r] $ of the permutation. For example, if $ a=[1,2,3,4] $ and a query $ l=2 $ , $ r=4 $ is applied, then the resulting permutation is $ [1,4,3,2] $ . After each query you have to determine whether the number of inversions is odd or even.输入输出格式
输入格式
The first line contains one integer $ n $ ( $ 1<=n<=1500 $ ) — the size of the permutation. The second line contains $ n $ integers $ a_{1} $ , $ a_{2} $ , ..., $ a_{n} $ ( $ 1<=a_{i}<=n $ ) — the elements of the permutation. These integers are pairwise distinct. The third line contains one integer $ m $ ( $ 1<=m<=2·10^{5} $ ) — the number of queries to process. Then $ m $ lines follow, $ i $ -th line containing two integers $ l_{i} $ , $ r_{i} $ ( $ 1<=l_{i}<=r_{i}<=n $ ) denoting that $ i $ -th query is to reverse a segment $ [l_{i},r_{i}] $ of the permutation. All queries are performed one after another.
输出格式
Print $ m $ lines. $ i $ -th of them must be equal to odd if the number of inversions in the permutation after $ i $ -th query is odd, and even otherwise.
输入输出样例
输入样例 #1
3
1 2 3
2
1 2
2 3
输出样例 #1
odd
even
输入样例 #2
4
1 2 4 3
4
1 1
1 4
1 4
2 3
输出样例 #2
odd
odd
odd
even