304786: CF913A. Modular Exponentiation

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Modular Exponentiation

题意翻译

给定n,m,求$m\ mod\ 2^n$

题目描述

The following problem is well-known: given integers $ n $ and $ m $ , calculate ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF913A/73fb55a49ff8c4211b34696969c8aef5090c1d6d.png), where $ 2^{n}=2·2·...·2 $ ( $ n $ factors), and ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF913A/b0d2851c9c5ab36f8f15a3eac416cac07be09dd3.png) denotes the remainder of division of $ x $ by $ y $ . You are asked to solve the "reverse" problem. Given integers $ n $ and $ m $ , calculate ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF913A/d4dceae314a5c8428af0d75bf92415449f36c7d5.png).

输入输出格式

输入格式


The first line contains a single integer $ n $ ( $ 1<=n<=10^{8} $ ). The second line contains a single integer $ m $ ( $ 1<=m<=10^{8} $ ).

输出格式


Output a single integer — the value of ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF913A/d4dceae314a5c8428af0d75bf92415449f36c7d5.png).

输入输出样例

输入样例 #1

4
42

输出样例 #1

10

输入样例 #2

1
58

输出样例 #2

0

输入样例 #3

98765432
23456789

输出样例 #3

23456789

说明

In the first example, the remainder of division of 42 by $ 2^{4}=16 $ is equal to 10. In the second example, 58 is divisible by $ 2^{1}=2 $ without remainder, and the answer is 0.

Input

题意翻译

给定n,m,求$m\ mod\ 2^n$

加入题单

上一题 下一题 算法标签: