304798: CF914E. Palindromes in a Tree

Memory Limit:256 MB Time Limit:4 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Palindromes in a Tree

题意翻译

#### 题意 给你一颗 $n$ 个顶点的树(连通无环图)。顶点从 $1$ 到 $n$ 编号,并且每个顶点对应一个在 `a` 到 `t` 的字母。 树上的一条路径是回文是指至少有一个对应字母的排列为回文。 对于每个顶点,输出通过它的回文路径的数量。 注意:从 $u$ 到 $v$ 的路径与从 $v$ 到 $u$ 的路径视为相同,只计数一次。 #### 输入格式: 第一行包含一个整数 $n$($2\leq n\leq 2\times 10^5$)。 接下来的 $n-1$ 行,每行包含两个整数 $u$ 和 $v$($1\leq u,v\leq n,u\neq v$)表示一条连接 $u$ 和 $v$ 的边。保证给出的图是一棵树。 再下一行包含一个 $n$ 个字符的字符串,第 $i$ 个字符对应第 $i$ 个顶点。 #### 输出格式: 输出一行,包含 $n$ 个整数,第 $i$ 个数表示经过顶点 $i$ 的回文路径数量。

题目描述

You are given a tree (a connected acyclic undirected graph) of $ n $ vertices. Vertices are numbered from $ 1 $ to $ n $ and each vertex is assigned a character from a to t. A path in the tree is said to be palindromic if at least one permutation of the labels in the path is a palindrome. For each vertex, output the number of palindromic paths passing through it. Note: The path from vertex $ u $ to vertex $ v $ is considered to be the same as the path from vertex $ v $ to vertex $ u $ , and this path will be counted only once for each of the vertices it passes through.

输入输出格式

输入格式


The first line contains an integer $ n $ ( $ 2<=n<=2·10^{5} $ ) — the number of vertices in the tree. The next $ n-1 $ lines each contain two integers $ u $ and $ v $ ( $ 1<=u,v<=n,u≠v $ ) denoting an edge connecting vertex $ u $ and vertex $ v $ . It is guaranteed that the given graph is a tree. The next line contains a string consisting of $ n $ lowercase characters from a to t where the $ i $ -th ( $ 1<=i<=n $ ) character is the label of vertex $ i $ in the tree.

输出格式


Print $ n $ integers in a single line, the $ i $ -th of which is the number of palindromic paths passing through vertex $ i $ in the tree.

输入输出样例

输入样例 #1

5
1 2
2 3
3 4
3 5
abcbb

输出样例 #1

1 3 4 3 3 

输入样例 #2

7
6 2
4 3
3 7
5 2
7 2
1 4
afefdfs

输出样例 #2

1 4 1 1 2 4 2 

说明

In the first sample case, the following paths are palindromic: $ 2-3-4 $ $ 2-3-5 $ $ 4-3-5 $ Additionally, all paths containing only one vertex are palindromic. Listed below are a few paths in the first sample that are not palindromic: $ 1-2-3 $ $ 1-2-3-4 $ $ 1-2-3-5 $

Input

题意翻译

#### 题意 给你一颗 $n$ 个顶点的树(连通无环图)。顶点从 $1$ 到 $n$ 编号,并且每个顶点对应一个在 `a` 到 `t` 的字母。 树上的一条路径是回文是指至少有一个对应字母的排列为回文。 对于每个顶点,输出通过它的回文路径的数量。 注意:从 $u$ 到 $v$ 的路径与从 $v$ 到 $u$ 的路径视为相同,只计数一次。 #### 输入格式: 第一行包含一个整数 $n$($2\leq n\leq 2\times 10^5$)。 接下来的 $n-1$ 行,每行包含两个整数 $u$ 和 $v$($1\leq u,v\leq n,u\neq v$)表示一条连接 $u$ 和 $v$ 的边。保证给出的图是一棵树。 再下一行包含一个 $n$ 个字符的字符串,第 $i$ 个字符对应第 $i$ 个顶点。 #### 输出格式: 输出一行,包含 $n$ 个整数,第 $i$ 个数表示经过顶点 $i$ 的回文路径数量。

加入题单

上一题 下一题 算法标签: