305070: CF960E. Alternating Tree
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Alternating Tree
题意翻译
给定一棵带点权的树,求所有有向路径的权值和。 一条有向路径的权值如下定义: 设这条路径依次经过的点的权值分别为 $a_1, a_2, ..., a_k$。 则路径的权值为 $a_1\times (-1)^2+a_2\times (-1)^3+...+a_n\times (-1)^{(n+1)}$。 答案对 $10^9+7$ 取模。题目描述
Given a tree with $ n $ nodes numbered from $ 1 $ to $ n $ . Each node $ i $ has an associated value $ V_i $ . If the simple path from $ u_1 $ to $ u_m $ consists of $ m $ nodes namely $ u_1 \rightarrow u_2 \rightarrow u_3 \rightarrow \dots u_{m-1} \rightarrow u_{m} $ , then its alternating function $ A(u_{1},u_{m}) $ is defined as $ A(u_{1},u_{m}) = \sum\limits_{i=1}^{m} (-1)^{i+1} \cdot V_{u_{i}} $ . A path can also have $ 0 $ edges, i.e. $ u_{1}=u_{m} $ . Compute the sum of alternating functions of all unique simple paths. Note that the paths are directed: two paths are considered different if the starting vertices differ or the ending vertices differ. The answer may be large so compute it modulo $ 10^{9}+7 $ .输入输出格式
输入格式
The first line contains an integer $ n $ $ (2 \leq n \leq 2\cdot10^{5} ) $ — the number of vertices in the tree. The second line contains $ n $ space-separated integers $ V_1, V_2, \ldots, V_n $ ( $ -10^9\leq V_i \leq 10^9 $ ) — values of the nodes. The next $ n-1 $ lines each contain two space-separated integers $ u $ and $ v $ $ (1\leq u, v\leq n, u \neq v) $ denoting an edge between vertices $ u $ and $ v $ . It is guaranteed that the given graph is a tree.
输出格式
Print the total sum of alternating functions of all unique simple paths modulo $ 10^{9}+7 $ .
输入输出样例
输入样例 #1
4
-4 1 5 -2
1 2
1 3
1 4
输出样例 #1
40
输入样例 #2
8
-2 6 -4 -4 -9 -3 -7 23
8 2
2 3
1 4
6 5
7 6
4 7
5 8
输出样例 #2
4