305093: CF964A. Splits
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Splits
题意翻译
## 题目描述 我们定义正整数$n$的分裂为一个由正整数组成的不上升序列,且序列数字和为$n$ 举个栗子:下列这些序列都是$8$的分裂:$[4,4],[3,3,2],[2,2,1,1,1],[5,2,1]$ 下列这些序列不是$8$的分裂:$[1,7],[5,4],[11,-3],[1,1,4,1,1]$ 一个分裂的权是序列第一个数出现的次数,举个例子:$[1,1,1,1,1]$的权是$5$,$[5,5,3,3,3]$的权是$2$,$[9]$的权是$1$ 现在给出$n$,求$n$的分裂有多少个不同的权 ## 输入输出格式 ### 输入格式: 第一行为$n(1\leq n \leq 10^9)$ ### 输出格式 答案题目描述
Let's define a split of $ n $ as a nonincreasing sequence of positive integers, the sum of which is $ n $ . For example, the following sequences are splits of $ 8 $ : $ [4, 4] $ , $ [3, 3, 2] $ , $ [2, 2, 1, 1, 1, 1] $ , $ [5, 2, 1] $ . The following sequences aren't splits of $ 8 $ : $ [1, 7] $ , $ [5, 4] $ , $ [11, -3] $ , $ [1, 1, 4, 1, 1] $ . The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $ [1, 1, 1, 1, 1] $ is $ 5 $ , the weight of the split $ [5, 5, 3, 3, 3] $ is $ 2 $ and the weight of the split $ [9] $ equals $ 1 $ . For a given $ n $ , find out the number of different weights of its splits.输入输出格式
输入格式
The first line contains one integer $ n $ ( $ 1 \leq n \leq 10^9 $ ).
输出格式
Output one integer — the answer to the problem.
输入输出样例
输入样例 #1
7
输出样例 #1
4
输入样例 #2
8
输出样例 #2
5
输入样例 #3
9
输出样例 #3
5