305093: CF964A. Splits

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Splits

题意翻译

## 题目描述 我们定义正整数$n$的分裂为一个由正整数组成的不上升序列,且序列数字和为$n$ 举个栗子:下列这些序列都是$8$的分裂:$[4,4],[3,3,2],[2,2,1,1,1],[5,2,1]$ 下列这些序列不是$8$的分裂:$[1,7],[5,4],[11,-3],[1,1,4,1,1]$ 一个分裂的权是序列第一个数出现的次数,举个例子:$[1,1,1,1,1]$的权是$5$,$[5,5,3,3,3]$的权是$2$,$[9]$的权是$1$ 现在给出$n$,求$n$的分裂有多少个不同的权 ## 输入输出格式 ### 输入格式: 第一行为$n(1\leq n \leq 10^9)$ ### 输出格式 答案

题目描述

Let's define a split of $ n $ as a nonincreasing sequence of positive integers, the sum of which is $ n $ . For example, the following sequences are splits of $ 8 $ : $ [4, 4] $ , $ [3, 3, 2] $ , $ [2, 2, 1, 1, 1, 1] $ , $ [5, 2, 1] $ . The following sequences aren't splits of $ 8 $ : $ [1, 7] $ , $ [5, 4] $ , $ [11, -3] $ , $ [1, 1, 4, 1, 1] $ . The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $ [1, 1, 1, 1, 1] $ is $ 5 $ , the weight of the split $ [5, 5, 3, 3, 3] $ is $ 2 $ and the weight of the split $ [9] $ equals $ 1 $ . For a given $ n $ , find out the number of different weights of its splits.

输入输出格式

输入格式


The first line contains one integer $ n $ ( $ 1 \leq n \leq 10^9 $ ).

输出格式


Output one integer — the answer to the problem.

输入输出样例

输入样例 #1

7

输出样例 #1

4

输入样例 #2

8

输出样例 #2

5

输入样例 #3

9

输出样例 #3

5

说明

In the first sample, there are following possible weights of splits of $ 7 $ : Weight 1: \[ $ \textbf 7 $ \] Weight 2: \[ $ \textbf 3 $ , $ \textbf 3 $ , 1\] Weight 3: \[ $ \textbf 2 $ , $ \textbf 2 $ , $ \textbf 2 $ , 1\] Weight 7: \[ $ \textbf 1 $ , $ \textbf 1 $ , $ \textbf 1 $ , $ \textbf 1 $ , $ \textbf 1 $ , $ \textbf 1 $ , $ \textbf 1 $ \]

Input

题意翻译

## 题目描述 我们定义正整数$n$的分裂为一个由正整数组成的不上升序列,且序列数字和为$n$ 举个栗子:下列这些序列都是$8$的分裂:$[4,4],[3,3,2],[2,2,1,1,1],[5,2,1]$ 下列这些序列不是$8$的分裂:$[1,7],[5,4],[11,-3],[1,1,4,1,1]$ 一个分裂的权是序列第一个数出现的次数,举个例子:$[1,1,1,1,1]$的权是$5$,$[5,5,3,3,3]$的权是$2$,$[9]$的权是$1$ 现在给出$n$,求$n$的分裂有多少个不同的权 ## 输入输出格式 ### 输入格式: 第一行为$n(1\leq n \leq 10^9)$ ### 输出格式 答案

加入题单

上一题 下一题 算法标签: