305129: CF977D. Divide by three, multiply by two

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:20 Solved:0

Description

Divide by three, multiply by two

题意翻译

## 题目描述 有一个长度为 $n$ 的数列 $a_i$,要求你将这个数列重排成一个排列 $p_i$,使得对于任意的 $p_i(1 \le i < n)$: - $p_i \times 2 = p_{i+1}$,或者 - 当 $p_i$ 可以被 $3$ 整除时,$p_i \div 3 = p_{i+1}$。 保证答案存在。 ## 输入输出格式 **输入格式:** 输入包含两行。 第一行一个整数 $n(2 \le n \le 100)$,表示数列中的元素个数。 第二行包含 $n$ 个整数 $a_1, a_2, \dots, a_n (1 \le a_i \le 10^{18})$,描述这个数列。 **输出格式:** 输出应包含 $n$ 个整数 $p_1, p_2, \dots, p_n$,表示你的答案。 ## 说明 在第一个样例中,一种可能的合法排列为 $[9,3,6,12,4,8]$。

题目描述

Polycarp likes to play with numbers. He takes some integer number $ x $ , writes it down on the board, and then performs with it $ n - 1 $ operations of the two kinds: - divide the number $ x $ by $ 3 $ ( $ x $ must be divisible by $ 3 $ ); - multiply the number $ x $ by $ 2 $ . After each operation, Polycarp writes down the result on the board and replaces $ x $ by the result. So there will be $ n $ numbers on the board after all. You are given a sequence of length $ n $ — the numbers that Polycarp wrote down. This sequence is given in arbitrary order, i.e. the order of the sequence can mismatch the order of the numbers written on the board. Your problem is to rearrange (reorder) elements of this sequence in such a way that it can match possible Polycarp's game in the order of the numbers written on the board. I.e. each next number will be exactly two times of the previous number or exactly one third of previous number. It is guaranteed that the answer exists.

输入输出格式

输入格式


The first line of the input contatins an integer number $ n $ ( $ 2 \le n \le 100 $ ) — the number of the elements in the sequence. The second line of the input contains $ n $ integer numbers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 3 \cdot 10^{18} $ ) — rearranged (reordered) sequence that Polycarp can wrote down on the board.

输出格式


Print $ n $ integer numbers — rearranged (reordered) input sequence that can be the sequence that Polycarp could write down on the board. It is guaranteed that the answer exists.

输入输出样例

输入样例 #1

6
4 8 6 3 12 9

输出样例 #1

9 3 6 12 4 8 

输入样例 #2

4
42 28 84 126

输出样例 #2

126 42 84 28 

输入样例 #3

2
1000000000000000000 3000000000000000000

输出样例 #3

3000000000000000000 1000000000000000000 

说明

In the first example the given sequence can be rearranged in the following way: $ [9, 3, 6, 12, 4, 8] $ . It can match possible Polycarp's game which started with $ x = 9 $ .

Input

题意翻译

## 题目描述 有一个长度为 $n$ 的数列 $a_i$,要求你将这个数列重排成一个排列 $p_i$,使得对于任意的 $p_i(1 \le i < n)$: - $p_i \times 2 = p_{i+1}$,或者 - 当 $p_i$ 可以被 $3$ 整除时,$p_i \div 3 = p_{i+1}$。 保证答案存在。 ## 输入输出格式 **输入格式:** 输入包含两行。 第一行一个整数 $n(2 \le n \le 100)$,表示数列中的元素个数。 第二行包含 $n$ 个整数 $a_1, a_2, \dots, a_n (1 \le a_i \le 10^{18})$,描述这个数列。 **输出格式:** 输出应包含 $n$ 个整数 $p_1, p_2, \dots, p_n$,表示你的答案。 ## 说明 在第一个样例中,一种可能的合法排列为 $[9,3,6,12,4,8]$。

加入题单

上一题 下一题 算法标签: