305165: CF983B. XOR-pyramid
Memory Limit:512 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
XOR-pyramid
题意翻译
## 题目描述 在一个长度为 $m$ 的数组 $b$ 中定义函数 $f$: ![](https://cdn.luogu.com.cn/upload/image_hosting/0k9bi5r7.png) 例如:$f(1, 2, 4, 8) = f(1 \oplus 2, 2 \oplus 4, 4 \oplus 8) = f(3, 6, 12) = f(3 \oplus 6, 6 \oplus 12) = f(5, 10) = f(5 \oplus 10) = f(15)$。 现在,我们拥有一个长度为 $n$ 的序列 $a$,给了您 $q$ 组询问,要求计算 $f(a_l, a_{l + 1}, ..., a_{r - 1}, a_{r})$。 翻译来自用户 363006。题目描述
For an array $ b $ of length $ m $ we define the function $ f $ as $ f(b) = \begin{cases} b[1] & \quad \text{if } m = 1 \\ f(b[1] \oplus b[2],b[2] \oplus b[3],\dots,b[m-1] \oplus b[m]) & \quad \text{otherwise,} \end{cases} $ where $ \oplus $ is [bitwise exclusive OR](https://en.wikipedia.org/wiki/Bitwise_operation#XOR). For example, $ f(1,2,4,8)=f(1\oplus2,2\oplus4,4\oplus8)=f(3,6,12)=f(3\oplus6,6\oplus12)=f(5,10)=f(5\oplus10)=f(15)=15 $ You are given an array $ a $ and a few queries. Each query is represented as two integers $ l $ and $ r $ . The answer is the maximum value of $ f $ on all continuous subsegments of the array $ a_l, a_{l+1}, \ldots, a_r $ .输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 1 \le n \le 5000 $ ) — the length of $ a $ . The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \le a_i \le 2^{30}-1 $ ) — the elements of the array. The third line contains a single integer $ q $ ( $ 1 \le q \le 100\,000 $ ) — the number of queries. Each of the next $ q $ lines contains a query represented as two integers $ l $ , $ r $ ( $ 1 \le l \le r \le n $ ).
输出格式
Print $ q $ lines — the answers for the queries.
输入输出样例
输入样例 #1
3
8 4 1
2
2 3
1 2
输出样例 #1
5
12
输入样例 #2
6
1 2 4 8 16 32
4
1 6
2 5
3 4
1 2
输出样例 #2
60
30
12
3