305205: CF990B. Micro-World
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Micro-World
题意翻译
给出一段长度为n的初始数列,当a[i]>a[j]并且a[i]<=a[j]+k时,可以将a[j]删除。求最终数列可能的最小长度 输入: 第一行输入n,k 第二行输入n个数表示a[i] 输出: 最终最小的可能长度 感谢@zhaotiensn 提供翻译题目描述
You have a Petri dish with bacteria and you are preparing to dive into the harsh micro-world. But, unfortunately, you don't have any microscope nearby, so you can't watch them. You know that you have $ n $ bacteria in the Petri dish and size of the $ i $ -th bacteria is $ a_i $ . Also you know intergalactic positive integer constant $ K $ . The $ i $ -th bacteria can swallow the $ j $ -th bacteria if and only if $ a_i > a_j $ and $ a_i \le a_j + K $ . The $ j $ -th bacteria disappear, but the $ i $ -th bacteria doesn't change its size. The bacteria can perform multiple swallows. On each swallow operation any bacteria $ i $ can swallow any bacteria $ j $ if $ a_i > a_j $ and $ a_i \le a_j + K $ . The swallow operations go one after another. For example, the sequence of bacteria sizes $ a=[101, 53, 42, 102, 101, 55, 54] $ and $ K=1 $ . The one of possible sequences of swallows is: $ [101, 53, 42, 102, \underline{101}, 55, 54] $ $ \to $ $ [101, \underline{53}, 42, 102, 55, 54] $ $ \to $ $ [\underline{101}, 42, 102, 55, 54] $ $ \to $ $ [42, 102, 55, \underline{54}] $ $ \to $ $ [42, 102, 55] $ . In total there are $ 3 $ bacteria remained in the Petri dish. Since you don't have a microscope, you can only guess, what the minimal possible number of bacteria can remain in your Petri dish when you finally will find any microscope.输入输出格式
输入格式
The first line contains two space separated positive integers $ n $ and $ K $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 1 \le K \le 10^6 $ ) — number of bacteria and intergalactic constant $ K $ . The second line contains $ n $ space separated integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^6 $ ) — sizes of bacteria you have.
输出格式
Print the only integer — minimal possible number of bacteria can remain.
输入输出样例
输入样例 #1
7 1
101 53 42 102 101 55 54
输出样例 #1
3
输入样例 #2
6 5
20 15 10 15 20 25
输出样例 #2
1
输入样例 #3
7 1000000
1 1 1 1 1 1 1
输出样例 #3
7