305373: CF1016G. Appropriate Team

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Appropriate Team

题意翻译

求有序对 $(i,j)$ 的数量,其中 $(i,j)$ 满足以下条件:存在 $v$ 使得 $\gcd(a_i,v)=X$ , $\text{lcm}(a_j,v)=Y$ 。其中 $i$ 可以等于 $j$ 。

题目描述

Since next season are coming, you'd like to form a team from two or three participants. There are $ n $ candidates, the $ i $ -th candidate has rank $ a_i $ . But you have weird requirements for your teammates: if you have rank $ v $ and have chosen the $ i $ -th and $ j $ -th candidate, then $ GCD(v, a_i) = X $ and $ LCM(v, a_j) = Y $ must be met. You are very experienced, so you can change your rank to any non-negative integer but $ X $ and $ Y $ are tied with your birthdate, so they are fixed. Now you want to know, how many are there pairs $ (i, j) $ such that there exists an integer $ v $ meeting the following constraints: $ GCD(v, a_i) = X $ and $ LCM(v, a_j) = Y $ . It's possible that $ i = j $ and you form a team of two. $ GCD $ is the greatest common divisor of two number, $ LCM $ — the least common multiple.

输入输出格式

输入格式


First line contains three integers $ n $ , $ X $ and $ Y $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 1 \le X \le Y \le 10^{18} $ ) — the number of candidates and corresponding constants. Second line contains $ n $ space separated integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^{18} $ ) — ranks of candidates.

输出格式


Print the only integer — the number of pairs $ (i, j) $ such that there exists an integer $ v $ meeting the following constraints: $ GCD(v, a_i) = X $ and $ LCM(v, a_j) = Y $ . It's possible that $ i = j $ .

输入输出样例

输入样例 #1

12 2 2
1 2 3 4 5 6 7 8 9 10 11 12

输出样例 #1

12

输入样例 #2

12 1 6
1 3 5 7 9 11 12 10 8 6 4 2

输出样例 #2

30

说明

In the first example next pairs are valid: $ a_j = 1 $ and $ a_i = [2, 4, 6, 8, 10, 12] $ or $ a_j = 2 $ and $ a_i = [2, 4, 6, 8, 10, 12] $ . The $ v $ in both cases can be equal to $ 2 $ . In the second example next pairs are valid: - $ a_j = 1 $ and $ a_i = [1, 5, 7, 11] $ ; - $ a_j = 2 $ and $ a_i = [1, 5, 7, 11, 10, 8, 4, 2] $ ; - $ a_j = 3 $ and $ a_i = [1, 3, 5, 7, 9, 11] $ ; - $ a_j = 6 $ and $ a_i = [1, 3, 5, 7, 9, 11, 12, 10, 8, 6, 4, 2] $ .

Input

题意翻译

求有序对 $(i,j)$ 的数量,其中 $(i,j)$ 满足以下条件:存在 $v$ 使得 $\gcd(a_i,v)=X$ , $\text{lcm}(a_j,v)=Y$ 。其中 $i$ 可以等于 $j$ 。

加入题单

上一题 下一题 算法标签: