305377: CF1017D. The Wu

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

The Wu

题意翻译

给长度 $n$ 的数组 $w$,定义两个长度 $n$ 的 01 串 $s,t$ 之间构成的答案为 $\sum_{i} w_i[s_i = t_i]$ 给定若干个长度为 $n$ 的 01 串,每次询问一个 01 串 $t$ 和整数 $k$,询问给定的串中和 $t$ 串构成答案小于等于 $k$ 的 01 串数量。

题目描述

Childan is making up a legendary story and trying to sell his forgery — a necklace with a strong sense of "Wu" to the Kasouras. But Mr. Kasoura is challenging the truth of Childan's story. So he is going to ask a few questions about Childan's so-called "personal treasure" necklace. This "personal treasure" is a multiset $ S $ of $ m $ "01-strings". A "01-string" is a string that contains $ n $ characters "0" and "1". For example, if $ n=4 $ , strings "0110", "0000", and "1110" are "01-strings", but "00110" (there are $ 5 $ characters, not $ 4 $ ) and "zero" (unallowed characters) are not. Note that the multiset $ S $ can contain equal elements. Frequently, Mr. Kasoura will provide a "01-string" $ t $ and ask Childan how many strings $ s $ are in the multiset $ S $ such that the "Wu" value of the pair $ (s, t) $ is not greater than $ k $ . Mrs. Kasoura and Mr. Kasoura think that if $ s_i = t_i $ ( $ 1\leq i\leq n $ ) then the "Wu" value of the character pair equals to $ w_i $ , otherwise $ 0 $ . The "Wu" value of the "01-string" pair is the sum of the "Wu" values of every character pair. Note that the length of every "01-string" is equal to $ n $ . For example, if $ w=[4, 5, 3, 6] $ , "Wu" of ("1001", "1100") is $ 7 $ because these strings have equal characters only on the first and third positions, so $ w_1+w_3=4+3=7 $ . You need to help Childan to answer Mr. Kasoura's queries. That is to find the number of strings in the multiset $ S $ such that the "Wu" value of the pair is not greater than $ k $ .

输入输出格式

输入格式


The first line contains three integers $ n $ , $ m $ , and $ q $ ( $ 1\leq n\leq 12 $ , $ 1\leq q, m\leq 5\cdot 10^5 $ ) — the length of the "01-strings", the size of the multiset $ S $ , and the number of queries. The second line contains $ n $ integers $ w_1, w_2, \ldots, w_n $ ( $ 0 \le w_i \le 100 $ ) — the value of the $ i $ -th caracter. Each of the next $ m $ lines contains the "01-string" $ s $ of length $ n $ — the string in the multiset $ S $ . Each of the next $ q $ lines contains the "01-string" $ t $ of length $ n $ and integer $ k $ ( $ 0\leq k\leq 100 $ ) — the query.

输出格式


For each query, print the answer for this query.

输入输出样例

输入样例 #1

2 4 5
40 20
01
01
10
11
00 20
00 40
11 20
11 40
11 60

输出样例 #1

2
4
2
3
4

输入样例 #2

1 2 4
100
0
1
0 0
0 100
1 0
1 100

输出样例 #2

1
2
1
2

说明

In the first example, we can get: "Wu" of ("01", "00") is $ 40 $ . "Wu" of ("10", "00") is $ 20 $ . "Wu" of ("11", "00") is $ 0 $ . "Wu" of ("01", "11") is $ 20 $ . "Wu" of ("10", "11") is $ 40 $ . "Wu" of ("11", "11") is $ 60 $ . In the first query, pairs ("11", "00") and ("10", "00") satisfy the condition since their "Wu" is not greater than $ 20 $ . In the second query, all strings satisfy the condition. In the third query, pairs ("01", "11") and ("01", "11") satisfy the condition. Note that since there are two "01" strings in the multiset, the answer is $ 2 $ , not $ 1 $ . In the fourth query, since $ k $ was increased, pair ("10", "11") satisfies the condition too. In the fifth query, since $ k $ was increased, pair ("11", "11") satisfies the condition too.

Input

题意翻译

给长度 $n$ 的数组 $w$,定义两个长度 $n$ 的 01 串 $s,t$ 之间构成的答案为 $\sum_{i} w_i[s_i = t_i]$ 给定若干个长度为 $n$ 的 01 串,每次询问一个 01 串 $t$ 和整数 $k$,询问给定的串中和 $t$ 串构成答案小于等于 $k$ 的 01 串数量。

加入题单

上一题 下一题 算法标签: