305414: CF1028B. Unnatural Conditions

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Unnatural Conditions

题意翻译

令$s(x)$为$x$的各个数位上的数字之和。 要求找到这样的$a,b$,使得$s(a),s(b)\ge n,\ s(a+b)\le m,\ 1\le a,b< 10^{2230}$

题目描述

Let $ s(x) $ be sum of digits in decimal representation of positive integer $ x $ . Given two integers $ n $ and $ m $ , find some positive integers $ a $ and $ b $ such that - $ s(a) \ge n $ , - $ s(b) \ge n $ , - $ s(a + b) \le m $ .

输入输出格式

输入格式


The only line of input contain two integers $ n $ and $ m $ ( $ 1 \le n, m \le 1129 $ ).

输出格式


Print two lines, one for decimal representation of $ a $ and one for decimal representation of $ b $ . Both numbers must not contain leading zeros and must have length no more than $ 2230 $ .

输入输出样例

输入样例 #1

6 5

输出样例 #1

6 
7

输入样例 #2

8 16

输出样例 #2

35 
53

说明

In the first sample, we have $ n = 6 $ and $ m = 5 $ . One valid solution is $ a = 6 $ , $ b = 7 $ . Indeed, we have $ s(a) = 6 \ge n $ and $ s(b) = 7 \ge n $ , and also $ s(a + b) = s(13) = 4 \le m $ .

Input

题意翻译

令$s(x)$为$x$的各个数位上的数字之和。 要求找到这样的$a,b$,使得$s(a),s(b)\ge n,\ s(a+b)\le m,\ 1\le a,b< 10^{2230}$

加入题单

上一题 下一题 算法标签: