305424: CF1029D. Concatenated Multiples

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Concatenated Multiples

题意翻译

给出$n(n\in[1,2\cdot10^5])$个数$a_1,a_2,\dots,a_n(a_i\in[1,10^9])$和$k$,求对于任意的两个数$a_i,a_j(i\neq j\text{且}i,j\in [1,n])$,使得两数连接起来组成的新数(如$12$与$3456$连接组成$123456$)能被$k(k\in [2,10^9])$整除的选定方式共有多少种. Translated by @BLUESKY007

题目描述

You are given an array $ a $ , consisting of $ n $ positive integers. Let's call a concatenation of numbers $ x $ and $ y $ the number that is obtained by writing down numbers $ x $ and $ y $ one right after another without changing the order. For example, a concatenation of numbers $ 12 $ and $ 3456 $ is a number $ 123456 $ . Count the number of ordered pairs of positions $ (i,j) $ ( $ i≠j $ ) in array $ a $ such that the concatenation of $ a_{i} $ and $ a_{j} $ is divisible by $ k $ .

输入输出格式

输入格式


The first line contains two integers $ n $ and $ k $ ( $ 1<=n<=2·10^{5} $ , $ 2<=k<=10^{9} $ ). The second line contains $ n $ integers $ a_{1},a_{2},...,a_{n} $ ( $ 1<=a_{i}<=10^{9} $ ).

输出格式


Print a single integer — the number of ordered pairs of positions $ (i,j) $ ( $ i≠j $ ) in array $ a $ such that the concatenation of $ a_{i} $ and $ a_{j} $ is divisible by $ k $ .

输入输出样例

输入样例 #1

6 11
45 1 10 12 11 7

输出样例 #1

7

输入样例 #2

4 2
2 78 4 10

输出样例 #2

12

输入样例 #3

5 2
3 7 19 3 3

输出样例 #3

0

说明

In the first example pairs $ (1,2) $ , $ (1,3) $ , $ (2,3) $ , $ (3,1) $ , $ (3,4) $ , $ (4,2) $ , $ (4,3) $ suffice. They produce numbers $ 451 $ , $ 4510 $ , $ 110 $ , $ 1045 $ , $ 1012 $ , $ 121 $ , $ 1210 $ , respectively, each of them is divisible by $ 11 $ . In the second example all $ n(n-1) $ pairs suffice. In the third example no pair is sufficient.

Input

题意翻译

给出$n(n\in[1,2\cdot10^5])$个数$a_1,a_2,\dots,a_n(a_i\in[1,10^9])$和$k$,求对于任意的两个数$a_i,a_j(i\neq j\text{且}i,j\in [1,n])$,使得两数连接起来组成的新数(如$12$与$3456$连接组成$123456$)能被$k(k\in [2,10^9])$整除的选定方式共有多少种. Translated by @BLUESKY007

加入题单

上一题 下一题 算法标签: