305541: CF1051B. Relatively Prime Pairs

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Relatively Prime Pairs

题目描述

You are given a set of all integers from $ l $ to $ r $ inclusive, $ l < r $ , $ (r - l + 1) \le 3 \cdot 10^5 $ and $ (r - l) $ is always odd. You want to split these numbers into exactly $ \frac{r - l + 1}{2} $ pairs in such a way that for each pair $ (i, j) $ the greatest common divisor of $ i $ and $ j $ is equal to $ 1 $ . Each number should appear in exactly one of the pairs. Print the resulting pairs or output that no solution exists. If there are multiple solutions, print any of them.

输入输出格式

输入格式


The only line contains two integers $ l $ and $ r $ ( $ 1 \le l < r \le 10^{18} $ , $ r - l + 1 \le 3 \cdot 10^5 $ , $ (r - l) $ is odd).

输出格式


If any solution exists, print "YES" in the first line. Each of the next $ \frac{r - l + 1}{2} $ lines should contain some pair of integers. GCD of numbers in each pair should be equal to $ 1 $ . All $ (r - l + 1) $ numbers should be pairwise distinct and should have values from $ l $ to $ r $ inclusive. If there are multiple solutions, print any of them. If there exists no solution, print "NO".

输入输出样例

输入样例 #1

1 8

输出样例 #1

YES
2 7
4 1
3 8
6 5

Input

暂时还没有翻译

加入题单

上一题 下一题 算法标签: