305601: CF1061C. Multiplicity
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Multiplicity
题意翻译
从序列 $\{a_1,\ a_2,\ ..\ ,\ a_n\}$ 中选出**非空**子序列 $\{b_1,\ b_2,\ ..\ ,\ b_k\}$,一个子序列合法需要满足 $\forall\ i \in [1,\ k],\ i\ |\ b_i$。求有多少互不相等的合法子序列,答案对 $10^9 + 7$ 取模。 序列 $\{1,\ 1\}$ 有 $2$ 种选法得到子序列 $\{1\}$,但 $1$ 的来源不同,认为这两个子序列不相等。题目描述
You are given an integer array $ a_1, a_2, \ldots, a_n $ . The array $ b $ is called to be a subsequence of $ a $ if it is possible to remove some elements from $ a $ to get $ b $ . Array $ b_1, b_2, \ldots, b_k $ is called to be good if it is not empty and for every $ i $ ( $ 1 \le i \le k $ ) $ b_i $ is divisible by $ i $ . Find the number of good subsequences in $ a $ modulo $ 10^9 + 7 $ . Two subsequences are considered different if index sets of numbers included in them are different. That is, the values of the elements do not matter in the comparison of subsequences. In particular, the array $ a $ has exactly $ 2^n - 1 $ different subsequences (excluding an empty subsequence).输入输出格式
输入格式
The first line contains an integer $ n $ ( $ 1 \le n \le 100\,000 $ ) — the length of the array $ a $ . The next line contains integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^6 $ ).
输出格式
Print exactly one integer — the number of good subsequences taken modulo $ 10^9 + 7 $ .
输入输出样例
输入样例 #1
2
1 2
输出样例 #1
3
输入样例 #2
5
2 2 1 22 14
输出样例 #2
13