305634: CF1066E. Binary Numbers AND Sum
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Binary Numbers AND Sum
题意翻译
## 题目大意 现在,给你两个位数为 $n$ 和 $m$ 的两个二进制数$a$,$b$,现在,我们要进行如下操作: * 计算$a$&$b$ * 答案累加上一个操作的值 * $b$右移一位,最后一位直接舍弃 现在,请你算出最终的答案,并输出,答案对998244353取模 ## 输入输出格式: ### 输入格式: 第一行,两个整数$n$,$m$,$(1≤n,m≤2 \times 10^5)$ 第一行,一个长度为$n$的二进制数$a$ 第一行,一个长度为$m$的二进制数$b$ ### 输出格式: 一行,一个数,表示答案题目描述
You are given two huge binary integer numbers $ a $ and $ b $ of lengths $ n $ and $ m $ respectively. You will repeat the following process: if $ b > 0 $ , then add to the answer the value $ a~ \&~ b $ and divide $ b $ by $ 2 $ rounding down (i.e. remove the last digit of $ b $ ), and repeat the process again, otherwise stop the process. The value $ a~ \&~ b $ means bitwise AND of $ a $ and $ b $ . Your task is to calculate the answer modulo $ 998244353 $ . Note that you should add the value $ a~ \&~ b $ to the answer in decimal notation, not in binary. So your task is to calculate the answer in decimal notation. For example, if $ a = 1010_2~ (10_{10}) $ and $ b = 1000_2~ (8_{10}) $ , then the value $ a~ \&~ b $ will be equal to $ 8 $ , not to $ 1000 $ .输入输出格式
输入格式
The first line of the input contains two integers $ n $ and $ m $ ( $ 1 \le n, m \le 2 \cdot 10^5 $ ) — the length of $ a $ and the length of $ b $ correspondingly. The second line of the input contains one huge integer $ a $ . It is guaranteed that this number consists of exactly $ n $ zeroes and ones and the first digit is always $ 1 $ . The third line of the input contains one huge integer $ b $ . It is guaranteed that this number consists of exactly $ m $ zeroes and ones and the first digit is always $ 1 $ .
输出格式
Print the answer to this problem in decimal notation modulo $ 998244353 $ .
输入输出样例
输入样例 #1
4 4
1010
1101
输出样例 #1
12
输入样例 #2
4 5
1001
10101
输出样例 #2
11