305655: CF1070I. Privatization of Roads in Berland

Memory Limit:256 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Privatization of Roads in Berland

题意翻译

给一个 $n$ 个点 $m$ 条边的无向图和一个参数 $k$,现在需要对图上的所有边染色,满足: - 所有颜色为 $1$ 至 $100500$ 间的整数; - 同种颜色的边最多两条; - 每个点周围所有边的不同颜色数 $\le k$。 构造染色方案,若无解输出 $m$ 个 $0$。

题目描述

There are $ n $ cities and $ m $ two-way roads in Berland, each road connecting two distinct cities. Recently the Berland government has made a tough decision to transfer ownership of the roads to private companies. In total, there are $ 100500 $ private companies in Berland, numbered by integers from $ 1 $ to $ 100500 $ . After the privatization, every road should belong to exactly one company. The anti-monopoly committee demands that after the privatization each company can own at most two roads. The urbanists of Berland also stated their opinion: each city should be adjacent to the roads owned by at most $ k $ companies. Help the government to distribute the roads between the companies so that both conditions are satisfied. That is, each company gets at most two roads, and each city has roads of at most $ k $ distinct companies adjacent to it.

输入输出格式

输入格式


Input contains one or several test cases. The first line contains an integer $ t $ ( $ 1 \le t \le 300 $ ) — the number of test cases in the input. Solve test cases separately, test cases are completely independent and do not affect each other. The following lines describe the test cases. Each case starts with a line consisting of three space-separated integers $ n $ , $ m $ and $ k $ ( $ 2 \le n \le 600 $ , $ 1 \le m \le 600 $ , $ 1 \le k \le n - 1 $ ) — the number of cities, the number of roads and the maximum diversity of the roads adjacent to a city. Then $ m $ lines follow, each having a pair of space-separated integers $ a_i $ , $ b_i $ ( $ 1 \le a_i, b_i \le n $ ; $ a_i \ne b_i $ ). It means that the $ i $ -th road connects cities $ a_i $ and $ b_i $ . All roads are two-way. There is at most one road between a pair of the cities. The sum of $ n $ values for all test cases doesn't exceed $ 600 $ . The sum of $ m $ values for all test cases doesn't exceed $ 600 $ .

输出格式


Print $ t $ lines: the $ i $ -th line should contain the answer for the $ i $ -th test case. For a test case, print a sequence of integers $ c_1, c_2, \dots, c_m $ separated by space, where $ c_i $ ( $ 1 \le c_i \le 100500 $ ) is the company which owns the $ i $ -th road in your plan. If there are multiple solutions, output any of them. If there is no solution for a test case, print $ c_1=c_2=\ldots=c_m=0 $ .

输入输出样例

输入样例 #1

3
3 3 2
1 2
2 3
3 1
4 5 2
1 2
1 3
1 4
2 3
2 4
4 6 2
1 2
1 3
1 4
2 3
2 4
3 4

输出样例 #1

1 2 3 
2 1 1 2 3 
0 0 0 0 0 0 

Input

题意翻译

给一个 $n$ 个点 $m$ 条边的无向图和一个参数 $k$,现在需要对图上的所有边染色,满足: - 所有颜色为 $1$ 至 $100500$ 间的整数; - 同种颜色的边最多两条; - 每个点周围所有边的不同颜色数 $\le k$。 构造染色方案,若无解输出 $m$ 个 $0$。

加入题单

上一题 下一题 算法标签: