305886: CF1105C. Ayoub and Lost Array
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Ayoub and Lost Array
题意翻译
已知有一个长度为$n$($1\leq n\leq 2 \times 10^5$)的数列,每一个数的大小在$[l,r]$($1\leq l \leq r \leq 10^9$)之间。求出有多少种方案使得这个数列的和为$3$的倍数。答案对$10^9+7$取模。当然,如果无法组成任何一个合法的数列,答案即为$0$。 ## 输入格式 一行三个正整数$n$,$l$,$r$ ## 输出格式 一行,表示方案数模$10^9+7$的结果。题目描述
Ayoub had an array $ a $ of integers of size $ n $ and this array had two interesting properties: - All the integers in the array were between $ l $ and $ r $ (inclusive). - The sum of all the elements was divisible by $ 3 $ . Unfortunately, Ayoub has lost his array, but he remembers the size of the array $ n $ and the numbers $ l $ and $ r $ , so he asked you to find the number of ways to restore the array. Since the answer could be very large, print it modulo $ 10^9 + 7 $ (i.e. the remainder when dividing by $ 10^9 + 7 $ ). In case there are no satisfying arrays (Ayoub has a wrong memory), print $ 0 $ .输入输出格式
输入格式
The first and only line contains three integers $ n $ , $ l $ and $ r $ ( $ 1 \le n \le 2 \cdot 10^5 , 1 \le l \le r \le 10^9 $ ) — the size of the lost array and the range of numbers in the array.
输出格式
Print the remainder when dividing by $ 10^9 + 7 $ the number of ways to restore the array.
输入输出样例
输入样例 #1
2 1 3
输出样例 #1
3
输入样例 #2
3 2 2
输出样例 #2
1
输入样例 #3
9 9 99
输出样例 #3
711426616