305903: CF1108B. Divisors of Two Integers

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Divisors of Two Integers

题意翻译

你得到2个数x与y,可是你忘了。 现在给你n个数字(d1~dn)每个数都是x或y的约数之一,如果一个数字在其中出现了2次,则是x与y的公约数。那么现在叫你求出x与y的可能值(只需要1个解并且保证有解) 输入:n($2 \le n \le 128$),接下来n个数d1~dn 输出:x与y的可能解之一

题目描述

Recently you have received two positive integer numbers $ x $ and $ y $ . You forgot them, but you remembered a shuffled list containing all divisors of $ x $ (including $ 1 $ and $ x $ ) and all divisors of $ y $ (including $ 1 $ and $ y $ ). If $ d $ is a divisor of both numbers $ x $ and $ y $ at the same time, there are two occurrences of $ d $ in the list. For example, if $ x=4 $ and $ y=6 $ then the given list can be any permutation of the list $ [1, 2, 4, 1, 2, 3, 6] $ . Some of the possible lists are: $ [1, 1, 2, 4, 6, 3, 2] $ , $ [4, 6, 1, 1, 2, 3, 2] $ or $ [1, 6, 3, 2, 4, 1, 2] $ . Your problem is to restore suitable positive integer numbers $ x $ and $ y $ that would yield the same list of divisors (possibly in different order). It is guaranteed that the answer exists, i.e. the given list of divisors corresponds to some positive integers $ x $ and $ y $ .

输入输出格式

输入格式


The first line contains one integer $ n $ ( $ 2 \le n \le 128 $ ) — the number of divisors of $ x $ and $ y $ . The second line of the input contains $ n $ integers $ d_1, d_2, \dots, d_n $ ( $ 1 \le d_i \le 10^4 $ ), where $ d_i $ is either divisor of $ x $ or divisor of $ y $ . If a number is divisor of both numbers $ x $ and $ y $ then there are two copies of this number in the list.

输出格式


Print two positive integer numbers $ x $ and $ y $ — such numbers that merged list of their divisors is the permutation of the given list of integers. It is guaranteed that the answer exists.

输入输出样例

输入样例 #1

10
10 2 8 1 2 4 1 20 4 5

输出样例 #1

20 8

Input

题意翻译

你得到2个数x与y,可是你忘了。 现在给你n个数字(d1~dn)每个数都是x或y的约数之一,如果一个数字在其中出现了2次,则是x与y的公约数。那么现在叫你求出x与y的可能值(只需要1个解并且保证有解) 输入:n($2 \le n \le 128$),接下来n个数d1~dn 输出:x与y的可能解之一

加入题单

上一题 下一题 算法标签: