305922: CF1110H. Modest Substrings

Memory Limit:1024 MB Time Limit:5 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Modest Substrings

题意翻译

### 题目描述 给出$l,r,n$,定义一个数的权值为数对$(i,j)(i < j)$的数量,满足$i$到$j$位的数拿出来得到的数的值在$[l,r]$内。 试求一个$n$位大数(包含前导$0$的子串不计入答案。),使得其权值最大。 ### 输入格式 三行,每行一个正整数,第一行为$l$,第二行为$r$,第三行为$n$ ### 输出格式 两行,第一行表示最大权值,第二行表示权值等于最大权值的最小大数。 ### 数据范围 $1 \leq l,r \leq 10^{800} , 1 \leq n \leq 2000$

题目描述

You are given two integers $ l $ and $ r $ . Let's call an integer $ x $ modest, if $ l \le x \le r $ . Find a string of length $ n $ , consisting of digits, which has the largest possible number of substrings, which make a modest integer. Substring having leading zeros are not counted. If there are many answers, find lexicographically smallest one. If some number occurs multiple times as a substring, then in the counting of the number of modest substrings it is counted multiple times as well.

输入输出格式

输入格式


The first line contains one integer $ l $ ( $ 1 \le l \le 10^{800} $ ). The second line contains one integer $ r $ ( $ l \le r \le 10^{800} $ ). The third line contains one integer $ n $ ( $ 1 \le n \le 2\,000 $ ).

输出格式


In the first line, print the maximum possible number of modest substrings. In the second line, print a string of length $ n $ having exactly that number of modest substrings. If there are multiple such strings, print the lexicographically smallest of them.

输入输出样例

输入样例 #1

1
10
3

输出样例 #1

3
101

输入样例 #2

1
11
3

输出样例 #2

5
111

输入样例 #3

12345
12346
6

输出样例 #3

1
012345

说明

In the first example, string «101» has modest substrings «1», «10», «1». In the second example, string «111» has modest substrings «1» ( $ 3 $ times) and «11» ( $ 2 $ times).

Input

题意翻译

### 题目描述 给出$l,r,n$,定义一个数的权值为数对$(i,j)(i < j)$的数量,满足$i$到$j$位的数拿出来得到的数的值在$[l,r]$内。 试求一个$n$位大数(包含前导$0$的子串不计入答案。),使得其权值最大。 ### 输入格式 三行,每行一个正整数,第一行为$l$,第二行为$r$,第三行为$n$ ### 输出格式 两行,第一行表示最大权值,第二行表示权值等于最大权值的最小大数。 ### 数据范围 $1 \leq l,r \leq 10^{800} , 1 \leq n \leq 2000$

加入题单

上一题 下一题 算法标签: