306070: CF1141F1. Same Sum Blocks (Easy)
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:20
Solved:0
Description
Same Sum Blocks (Easy)
题意翻译
有一个序列a1,a2,a3....an。定义(li,ri)=a[li] + a[li +1] + a[li +2] + ...+a[ri ] 找到最大的k使得(l1,r1)=(l2,r2)=...=(lk,rk) 且区间[l1,r1],[l2,r2]...[lk,rk] 互不相交题目描述
This problem is given in two editions, which differ exclusively in the constraints on the number $ n $ . You are given an array of integers $ a[1], a[2], \dots, a[n]. $ A block is a sequence of contiguous (consecutive) elements $ a[l], a[l+1], \dots, a[r] $ ( $ 1 \le l \le r \le n $ ). Thus, a block is defined by a pair of indices $ (l, r) $ . Find a set of blocks $ (l_1, r_1), (l_2, r_2), \dots, (l_k, r_k) $ such that: - They do not intersect (i.e. they are disjoint). Formally, for each pair of blocks $ (l_i, r_i) $ and $ (l_j, r_j $ ) where $ i \neq j $ either $ r_i < l_j $ or $ r_j < l_i $ . - For each block the sum of its elements is the same. Formally, $ $a[l_1]+a[l_1+1]+\dots+a[r_1]=a[l_2]+a[l_2+1]+\dots+a[r_2]= $ $ $ $ \dots = $ $ $ $ a[l_k]+a[l_k+1]+\dots+a[r_k]. $ $ </li><li> The number of the blocks in the set is maximum. Formally, there does not exist a set of blocks $ (l\_1', r\_1'), (l\_2', r\_2'), \\dots, (l\_{k'}', r\_{k'}') $ satisfying the above two requirements with $ k' > k$. ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1141F1/a32038d691a8fef036434bed64856f1bff592dde.png)The picture corresponds to the first example. Blue boxes illustrate blocks.Write a program to find such a set of blocks.输入输出格式
输入格式
The first line contains integer $ n $ ( $ 1 \le n \le 50 $ ) — the length of the given array. The second line contains the sequence of elements $ a[1], a[2], \dots, a[n] $ ( $ -10^5 \le a_i \le 10^5 $ ).
输出格式
In the first line print the integer $ k $ ( $ 1 \le k \le n $ ). The following $ k $ lines should contain blocks, one per line. In each line print a pair of indices $ l_i, r_i $ ( $ 1 \le l_i \le r_i \le n $ ) — the bounds of the $ i $ -th block. You can print blocks in any order. If there are multiple answers, print any of them.
输入输出样例
输入样例 #1
7
4 1 2 2 1 5 3
输出样例 #1
3
7 7
2 3
4 5
输入样例 #2
11
-5 -4 -3 -2 -1 0 1 2 3 4 5
输出样例 #2
2
3 4
1 1
输入样例 #3
4
1 1 1 1
输出样例 #3
4
4 4
1 1
2 2
3 3