306292: CF1174C. Ehab and a Special Coloring Problem

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Ehab and a Special Coloring Problem

题意翻译

你有一个数组,长度为n,现在你需要构造一个序列,使得这个序列满足如下要求: * 对于任意一对$i,j$,如果$\gcd(i,j)=1$,则$a[i]!=a[j]$ * 使该序列中的最大值最小化。 请输出这个序列的第二个位置到最后一个位置的值。

题目描述

You're given an integer $ n $ . For every integer $ i $ from $ 2 $ to $ n $ , assign a positive integer $ a_i $ such that the following conditions hold: - For any pair of integers $ (i,j) $ , if $ i $ and $ j $ are coprime, $ a_i \neq a_j $ . - The maximal value of all $ a_i $ should be minimized (that is, as small as possible). A pair of integers is called [coprime](https://en.wikipedia.org/wiki/Coprime_integers) if their [greatest common divisor](https://en.wikipedia.org/wiki/Greatest_common_divisor) is $ 1 $ .

输入输出格式

输入格式


The only line contains the integer $ n $ ( $ 2 \le n \le 10^5 $ ).

输出格式


Print $ n-1 $ integers, $ a_2 $ , $ a_3 $ , $ \ldots $ , $ a_n $ ( $ 1 \leq a_i \leq n $ ). If there are multiple solutions, print any of them.

输入输出样例

输入样例 #1

4

输出样例 #1

1 2 1 

输入样例 #2

3

输出样例 #2

2 1

说明

In the first example, notice that $ 3 $ and $ 4 $ are coprime, so $ a_3 \neq a_4 $ . Also, notice that $ a=[1,2,3] $ satisfies the first condition, but it's not a correct answer because its maximal value is $ 3 $ .

Input

题意翻译

你有一个数组,长度为n,现在你需要构造一个序列,使得这个序列满足如下要求: * 对于任意一对$i,j$,如果$\gcd(i,j)=1$,则$a[i]!=a[j]$ * 使该序列中的最大值最小化。 请输出这个序列的第二个位置到最后一个位置的值。

加入题单

上一题 下一题 算法标签: