306591: CF1218H. Function Composition

Memory Limit:256 MB Time Limit:0 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Function Composition

题意翻译

f(i,1)=a[i] f(i,m)=a[ f(i,m-1) ] 有一个长度为n的序列,你需要回答Q个问题,每个问题由m,y组成,问有多少个x,使得f(x,m)=y

题目描述

We are definitely not going to bother you with another generic story when Alice finds about an array or when Alice and Bob play some stupid game. This time you'll get a simple, plain text. First, let us define several things. We define function $ F $ on the array $ A $ such that $ F(i, 1) = A[i] $ and $ F(i, m) = A[F(i, m - 1)] $ for $ m > 1 $ . In other words, value $ F(i, m) $ represents composition $ A[...A[i]] $ applied $ m $ times. You are given an array of length $ N $ with non-negative integers. You are expected to give an answer on $ Q $ queries. Each query consists of two numbers – $ m $ and $ y $ . For each query determine how many $ x $ exist such that $ F(x,m) = y $ .

输入输出格式

输入格式


The first line contains one integer $ N $ $ (1 \leq N \leq 2 \cdot 10^5) $ – the size of the array $ A $ . The next line contains $ N $ non-negative integers – the array $ A $ itself $ (1 \leq A_i \leq N) $ . The next line contains one integer $ Q $ $ (1 \leq Q \leq 10^5) $ – the number of queries. Each of the next $ Q $ lines contain two integers $ m $ and $ y $ $ (1 \leq m \leq 10^{18}, 1\leq y \leq N) $ .

输出格式


Output exactly $ Q $ lines with a single integer in each that represent the solution. Output the solutions in the order the queries were asked in.

输入输出样例

输入样例 #1

10
2 3 1 5 6 4 2 10 7 7
5
10 1
5 7
10 6
1 1
10 8

输出样例 #1

3
0
1
1
0

说明

For the first query we can notice that $ F(3, 10) = 1,\ F(9, 10) = 1 $ and $ F(10, 10) = 1 $ . For the second query no $ x $ satisfies condition $ F(x, 5) = 7 $ . For the third query $ F(5, 10) = 6 $ holds. For the fourth query $ F(3, 1) = 1. $ For the fifth query no $ x $ satisfies condition $ F(x, 10) = 8 $ .

Input

题意翻译

f(i,1)=a[i] f(i,m)=a[ f(i,m-1) ] 有一个长度为n的序列,你需要回答Q个问题,每个问题由m,y组成,问有多少个x,使得f(x,m)=y

加入题单

上一题 下一题 算法标签: