306871: CF1264C. Beautiful Mirrors with queries
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Beautiful Mirrors with queries
题意翻译
$Creatnx$有$n(n<=2*10^5)$个镜子,编号从$1$到$n$。每天$Creatnx$会去问镜子“我漂亮吗”,第$i$个镜子有$\frac{p_i}{100}(p_i<=100)$的概率回答他是,否则回答他否。 $Creatnx$会从第$1$个镜子开始逐个提问,其中某些镜子被称作“检查点”,**最开始检查点只有1**,对于每次提问: $1.$被回答是:若$Creatnx$询问的是第$n$个镜子,他将停止询问并变得十分开心,否则他会继续询问下一个镜子 $2.$被回答否:$Creatnx$会十分难受,并停止该天的提问,第二天他会从编号小于等于当前镜子的且最近的检查点开始提问。 (即假设他当前询问的$i$,他会找到一个最大的$x$使得$x<=i$并且$x$是检查点,第二天从$x$开始询问) 题目将会有$q(q<=2*10^5)$次修改,每次修改给出一个$u(2<=u<=n)$,若$u$不是检查点则将它变成检查点,否则将$u$变成非检查点。 求每次修改后$Creatnx$期望提问多少次能变得开心,答案对$998244353$取模题目描述
Creatnx has $ n $ mirrors, numbered from $ 1 $ to $ n $ . Every day, Creatnx asks exactly one mirror "Am I beautiful?". The $ i $ -th mirror will tell Creatnx that he is beautiful with probability $ \frac{p_i}{100} $ for all $ 1 \le i \le n $ . Some mirrors are called checkpoints. Initially, only the $ 1 $ st mirror is a checkpoint. It remains a checkpoint all the time. Creatnx asks the mirrors one by one, starting from the $ 1 $ -st mirror. Every day, if he asks $ i $ -th mirror, there are two possibilities: - The $ i $ -th mirror tells Creatnx that he is beautiful. In this case, if $ i = n $ Creatnx will stop and become happy, otherwise he will continue asking the $ i+1 $ -th mirror next day; - In the other case, Creatnx will feel upset. The next day, Creatnx will start asking from the checkpoint with a maximal number that is less or equal to $ i $ . There are some changes occur over time: some mirrors become new checkpoints and some mirrors are no longer checkpoints. You are given $ q $ queries, each query is represented by an integer $ u $ : If the $ u $ -th mirror isn't a checkpoint then we set it as a checkpoint. Otherwise, the $ u $ -th mirror is no longer a checkpoint. After each query, you need to calculate [the expected number](https://en.wikipedia.org/wiki/Expected_value) of days until Creatnx becomes happy. Each of this numbers should be found by modulo $ 998244353 $ . Formally, let $ M = 998244353 $ . It can be shown that the answer can be expressed as an irreducible fraction $ \frac{p}{q} $ , where $ p $ and $ q $ are integers and $ q \not \equiv 0 \pmod{M} $ . Output the integer equal to $ p \cdot q^{-1} \bmod M $ . In other words, output such an integer $ x $ that $ 0 \le x < M $ and $ x \cdot q \equiv p \pmod{M} $ .输入输出格式
输入格式
The first line contains two integers $ n $ , $ q $ ( $ 2 \leq n, q \le 2 \cdot 10^5 $ ) — the number of mirrors and queries. The second line contains $ n $ integers: $ p_1, p_2, \ldots, p_n $ ( $ 1 \leq p_i \leq 100 $ ). Each of $ q $ following lines contains a single integer $ u $ ( $ 2 \leq u \leq n $ ) — next query.
输出格式
Print $ q $ numbers – the answers after each query by modulo $ 998244353 $ .
输入输出样例
输入样例 #1
2 2
50 50
2
2
输出样例 #1
4
6
输入样例 #2
5 5
10 20 30 40 50
2
3
4
5
3
输出样例 #2
117
665496274
332748143
831870317
499122211