306990: CF1283B. Candies Division
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Candies Division
题意翻译
## 题目描述 求最大的$ans$,使得$ans\le n$且$ans\equiv r(mod\ k),r\le\lfloor\dfrac{k}{2}\rfloor$。 ## 输入格式 第1行输入1个整数$t(1\le t\le 5·10^4)$,为测试数据组数。 接下来$t$行,每行输入2个整数$n$和$k(1\le n,k\le 10^9)$。 ## 输出格式 $t$行,第$i$行输出第$i$个测试数据的$ans$。题目描述
Santa has $ n $ candies and he wants to gift them to $ k $ kids. He wants to divide as many candies as possible between all $ k $ kids. Santa can't divide one candy into parts but he is allowed to not use some candies at all. Suppose the kid who recieves the minimum number of candies has $ a $ candies and the kid who recieves the maximum number of candies has $ b $ candies. Then Santa will be satisfied, if the both conditions are met at the same time: - $ b - a \le 1 $ (it means $ b = a $ or $ b = a + 1 $ ); - the number of kids who has $ a+1 $ candies (note that $ a+1 $ not necessarily equals $ b $ ) does not exceed $ \lfloor\frac{k}{2}\rfloor $ (less than or equal to $ \lfloor\frac{k}{2}\rfloor $ ). $ \lfloor\frac{k}{2}\rfloor $ is $ k $ divided by $ 2 $ and rounded down to the nearest integer. For example, if $ k=5 $ then $ \lfloor\frac{k}{2}\rfloor=\lfloor\frac{5}{2}\rfloor=2 $ . Your task is to find the maximum number of candies Santa can give to kids so that he will be satisfied. You have to answer $ t $ independent test cases.输入输出格式
输入格式
The first line of the input contains one integer $ t $ ( $ 1 \le t \le 5 \cdot 10^4 $ ) — the number of test cases. The next $ t $ lines describe test cases. The $ i $ -th test case contains two integers $ n $ and $ k $ ( $ 1 \le n, k \le 10^9 $ ) — the number of candies and the number of kids.
输出格式
For each test case print the answer on it — the maximum number of candies Santa can give to kids so that he will be satisfied.
输入输出样例
输入样例 #1
5
5 2
19 4
12 7
6 2
100000 50010
输出样例 #1
5
18
10
6
75015