307023: CF1288B. Yet Another Meme Problem
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Yet Another Meme Problem
题意翻译
- 给定 $A,B$,问有多少个二元组 $(a,b)$ 满足 $1\le a \le A,1\le b\le B$ 且 $a\cdot b+a+b=\operatorname{conc}(a,b)$。其中 $\operatorname{conc}(a,b)$ 表示将 $a,b$ 拼接在一起,比如 $\operatorname{conc}(12,23)=1223,\operatorname{conc}(100,11)=10011$,$a,b$ 不能含有前导 $0$。 - 本题有多组数据。令数据组数为 $T$,$T\le 100$,$A\le 10^9$,$B\le 10^9$。题目描述
Try guessing the statement from this picture <http://tiny.cc/ogyoiz>. You are given two integers $ A $ and $ B $ , calculate the number of pairs $ (a, b) $ such that $ 1 \le a \le A $ , $ 1 \le b \le B $ , and the equation $ a \cdot b + a + b = conc(a, b) $ is true; $ conc(a, b) $ is the concatenation of $ a $ and $ b $ (for example, $ conc(12, 23) = 1223 $ , $ conc(100, 11) = 10011 $ ). $ a $ and $ b $ should not contain leading zeroes.输入输出格式
输入格式
The first line contains $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. Each test case contains two integers $ A $ and $ B $ $ (1 \le A, B \le 10^9) $ .
输出格式
Print one integer — the number of pairs $ (a, b) $ such that $ 1 \le a \le A $ , $ 1 \le b \le B $ , and the equation $ a \cdot b + a + b = conc(a, b) $ is true.
输入输出样例
输入样例 #1
3
1 11
4 2
191 31415926
输出样例 #1
1
0
1337