307029: CF1290B. Irreducible Anagrams

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Irreducible Anagrams

题意翻译

定义两个长度相同的串 s,t 为一对“神奇串”当且仅当 s 重新排列后可以变成 t。 对于一对“神奇串” s,t ,定义他们为一对“超级神奇串”当且仅当能对它们划分成 k(k≥2)段(设为 s1,s2...sk,t1,t2...tk),使得所有的 1≤i≤k 都满足 si,ti 为一对“神奇串”(看图) 现在给你一个串 s,每次询问一个子串,问是否至少存在一个串使得该串与子串是一对“神奇串”但不是“超级神奇串”

题目描述

Let's call two strings $ s $ and $ t $ anagrams of each other if it is possible to rearrange symbols in the string $ s $ to get a string, equal to $ t $ . Let's consider two strings $ s $ and $ t $ which are anagrams of each other. We say that $ t $ is a reducible anagram of $ s $ if there exists an integer $ k \ge 2 $ and $ 2k $ non-empty strings $ s_1, t_1, s_2, t_2, \dots, s_k, t_k $ that satisfy the following conditions: 1. If we write the strings $ s_1, s_2, \dots, s_k $ in order, the resulting string will be equal to $ s $ ; 2. If we write the strings $ t_1, t_2, \dots, t_k $ in order, the resulting string will be equal to $ t $ ; 3. For all integers $ i $ between $ 1 $ and $ k $ inclusive, $ s_i $ and $ t_i $ are anagrams of each other. If such strings don't exist, then $ t $ is said to be an irreducible anagram of $ s $ . Note that these notions are only defined when $ s $ and $ t $ are anagrams of each other. For example, consider the string $ s = $ "gamegame". Then the string $ t = $ "megamage" is a reducible anagram of $ s $ , we may choose for example $ s_1 = $ "game", $ s_2 = $ "gam", $ s_3 = $ "e" and $ t_1 = $ "mega", $ t_2 = $ "mag", $ t_3 = $ "e": ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1290B/c163083e3bbaacf9e28f6fddff5f78534bd4ddb9.png)On the other hand, we can prove that $ t = $ "memegaga" is an irreducible anagram of $ s $ . You will be given a string $ s $ and $ q $ queries, represented by two integers $ 1 \le l \le r \le |s| $ (where $ |s| $ is equal to the length of the string $ s $ ). For each query, you should find if the substring of $ s $ formed by characters from the $ l $ -th to the $ r $ -th has at least one irreducible anagram.

输入输出格式

输入格式


The first line contains a string $ s $ , consisting of lowercase English characters ( $ 1 \le |s| \le 2 \cdot 10^5 $ ). The second line contains a single integer $ q $ ( $ 1 \le q \le 10^5 $ ) — the number of queries. Each of the following $ q $ lines contain two integers $ l $ and $ r $ ( $ 1 \le l \le r \le |s| $ ), representing a query for the substring of $ s $ formed by characters from the $ l $ -th to the $ r $ -th.

输出格式


For each query, print a single line containing "Yes" (without quotes) if the corresponding substring has at least one irreducible anagram, and a single line containing "No" (without quotes) otherwise.

输入输出样例

输入样例 #1

aaaaa
3
1 1
2 4
5 5

输出样例 #1

Yes
No
Yes

输入样例 #2

aabbbbbbc
6
1 2
2 4
2 2
1 9
5 7
3 5

输出样例 #2

No
Yes
Yes
Yes
No
No

说明

In the first sample, in the first and third queries, the substring is "a", which has itself as an irreducible anagram since two or more non-empty strings cannot be put together to obtain "a". On the other hand, in the second query, the substring is "aaa", which has no irreducible anagrams: its only anagram is itself, and we may choose $ s_1 = $ "a", $ s_2 = $ "aa", $ t_1 = $ "a", $ t_2 = $ "aa" to show that it is a reducible anagram. In the second query of the second sample, the substring is "abb", which has, for example, "bba" as an irreducible anagram.

Input

题意翻译

定义两个长度相同的串 s,t 为一对“神奇串”当且仅当 s 重新排列后可以变成 t。 对于一对“神奇串” s,t ,定义他们为一对“超级神奇串”当且仅当能对它们划分成 k(k≥2)段(设为 s1,s2...sk,t1,t2...tk),使得所有的 1≤i≤k 都满足 si,ti 为一对“神奇串”(看图) 现在给你一个串 s,每次询问一个子串,问是否至少存在一个串使得该串与子串是一对“神奇串”但不是“超级神奇串”

加入题单

上一题 下一题 算法标签: