307162: CF1312A. Two Regular Polygons

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Two Regular Polygons

题意翻译

题目大意: - 有一个正凸多边形,有 $n$ 条边。 - 构造另一个有 $m$ 条边的正凸多边形,使得这个多边形的中心与给定的正多边形的中心重合,且构造的正多边形的顶点都在给定的正多边形的顶点上。 - 判断可不可能构造出这样的多边形。 输入输出: - 共 $t$ 组,每组两个正整数 $n,m$。 - 对于每一组输入,输出"YES"或"NO",作为应答(没有双引号)。 数据范围: - $1 \le t \le 10^4$ - $ 3 \le m < n \le 100$

题目描述

You are given two integers $ n $ and $ m $ ( $ m < n $ ). Consider a convex regular polygon of $ n $ vertices. Recall that a regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1312A/95b1bef3403a130cb1532da909306b47c3e9056c.png) Examples of convex regular polygons Your task is to say if it is possible to build another convex regular polygon with $ m $ vertices such that its center coincides with the center of the initial polygon and each of its vertices is some vertex of the initial polygon. You have to answer $ t $ independent test cases.

输入输出格式

输入格式


The first line of the input contains one integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases. The next $ t $ lines describe test cases. Each test case is given as two space-separated integers $ n $ and $ m $ ( $ 3 \le m < n \le 100 $ ) — the number of vertices in the initial polygon and the number of vertices in the polygon you want to build.

输出格式


For each test case, print the answer — "YES" (without quotes), if it is possible to build another convex regular polygon with $ m $ vertices such that its center coincides with the center of the initial polygon and each of its vertices is some vertex of the initial polygon and "NO" otherwise.

输入输出样例

输入样例 #1

2
6 3
7 3

输出样例 #1

YES
NO

说明

![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1312A/0982568e883452a4972ef18c303a083c1c1e1608.png) The first test case of the example It can be shown that the answer for the second test case of the example is "NO".

Input

题意翻译

题目大意: - 有一个正凸多边形,有 $n$ 条边。 - 构造另一个有 $m$ 条边的正凸多边形,使得这个多边形的中心与给定的正多边形的中心重合,且构造的正多边形的顶点都在给定的正多边形的顶点上。 - 判断可不可能构造出这样的多边形。 输入输出: - 共 $t$ 组,每组两个正整数 $n,m$。 - 对于每一组输入,输出"YES"或"NO",作为应答(没有双引号)。 数据范围: - $1 \le t \le 10^4$ - $ 3 \le m < n \le 100$

加入题单

上一题 下一题 算法标签: