307214: CF1322B. Present

Memory Limit:512 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Present

题意翻译

- 给出一个长度为 $n$ 的数列 $a$。其中第 $i$ 项为 $a_i$。 - 请你求出 $\bigoplus_{i=1}^{n}\bigoplus_{j=i+1}^{n}(a_i+a_j)$。其中 $\oplus$ 表示按位异或操作。 - $2 \leq n \leq 4 \times 10^5$,$1 \leq a_i \leq 10^7$。

题目描述

Catherine received an array of integers as a gift for March 8. Eventually she grew bored with it, and she started calculated various useless characteristics for it. She succeeded to do it for each one she came up with. But when she came up with another one — xor of all pairwise sums of elements in the array, she realized that she couldn't compute it for a very large array, thus she asked for your help. Can you do it? Formally, you need to compute $ $ (a_1 + a_2) \oplus (a_1 + a_3) \oplus \ldots \oplus (a_1 + a_n) \\ \oplus (a_2 + a_3) \oplus \ldots \oplus (a_2 + a_n) \\ \ldots \\ \oplus (a_{n-1} + a_n) \\ $ $ </p><p>Here $ x \\oplus y $ is a bitwise XOR operation (i.e. $ x $ <span class="tex-font-style-tt">^</span> $ y$ in many modern programming languages). You can read about it in Wikipedia: [https://en.wikipedia.org/wiki/Exclusive\_or#Bitwise\_operation](https://en.wikipedia.org/wiki/Exclusive_or#Bitwise_operation).

输入输出格式

输入格式


The first line contains a single integer $ n $ ( $ 2 \leq n \leq 400\,000 $ ) — the number of integers in the array. The second line contains integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 10^7 $ ).

输出格式


Print a single integer — xor of all pairwise sums of integers in the given array.

输入输出样例

输入样例 #1

2
1 2

输出样例 #1

3

输入样例 #2

3
1 2 3

输出样例 #2

2

说明

In the first sample case there is only one sum $ 1 + 2 = 3 $ . In the second sample case there are three sums: $ 1 + 2 = 3 $ , $ 1 + 3 = 4 $ , $ 2 + 3 = 5 $ . In binary they are represented as $ 011_2 \oplus 100_2 \oplus 101_2 = 010_2 $ , thus the answer is 2. $ \oplus $ is the bitwise xor operation. To define $ x \oplus y $ , consider binary representations of integers $ x $ and $ y $ . We put the $ i $ -th bit of the result to be 1 when exactly one of the $ i $ -th bits of $ x $ and $ y $ is 1. Otherwise, the $ i $ -th bit of the result is put to be 0. For example, $ 0101_2 \, \oplus \, 0011_2 = 0110_2 $ .

Input

题意翻译

- 给出一个长度为 $n$ 的数列 $a$。其中第 $i$ 项为 $a_i$。 - 请你求出 $\bigoplus_{i=1}^{n}\bigoplus_{j=i+1}^{n}(a_i+a_j)$。其中 $\oplus$ 表示按位异或操作。 - $2 \leq n \leq 4 \times 10^5$,$1 \leq a_i \leq 10^7$。

加入题单

上一题 下一题 算法标签: