307250: CF1327E. Count The Blocks

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Count The Blocks

题意翻译

给定正整数 $n$。 对于一个数 $t$,定义一个块是 $t$ 中的连续相等的一串数字。 写下 $0\cdots10^n-1$ 的所有数,不足 $n$ 位的用前导 $0$ 补足 $n$ 位。 对于每个 $i=1\cdots n$,求这 $10^n$ 个数中一共有多少个长为 $i$ 的块。

题目描述

You wrote down all integers from $ 0 $ to $ 10^n - 1 $ , padding them with leading zeroes so their lengths are exactly $ n $ . For example, if $ n = 3 $ then you wrote out 000, 001, ..., 998, 999. A block in an integer $ x $ is a consecutive segment of equal digits that cannot be extended to the left or to the right. For example, in the integer $ 00027734000 $ there are three blocks of length $ 1 $ , one block of length $ 2 $ and two blocks of length $ 3 $ . For all integers $ i $ from $ 1 $ to $ n $ count the number of blocks of length $ i $ among the written down integers. Since these integers may be too large, print them modulo $ 998244353 $ .

输入输出格式

输入格式


The only line contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ).

输出格式


In the only line print $ n $ integers. The $ i $ -th integer is equal to the number of blocks of length $ i $ . Since these integers may be too large, print them modulo $ 998244353 $ .

输入输出样例

输入样例 #1

1

输出样例 #1

10

输入样例 #2

2

输出样例 #2

180 10

Input

题意翻译

给定正整数 $n$。 对于一个数 $t$,定义一个块是 $t$ 中的连续相等的一串数字。 写下 $0\cdots10^n-1$ 的所有数,不足 $n$ 位的用前导 $0$ 补足 $n$ 位。 对于每个 $i=1\cdots n$,求这 $10^n$ 个数中一共有多少个长为 $i$ 的块。

加入题单

上一题 下一题 算法标签: