307296: CF1334G. Substring Search
Memory Limit:512 MB
Time Limit:0 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Substring Search
题目描述
You are given a permutation $ p $ consisting of exactly $ 26 $ integers from $ 1 $ to $ 26 $ (since it is a permutation, each integer from $ 1 $ to $ 26 $ occurs in $ p $ exactly once) and two strings $ s $ and $ t $ consisting of lowercase Latin letters. A substring $ t' $ of string $ t $ is an occurence of string $ s $ if the following conditions are met: 1. $ |t'| = |s| $ ; 2. for each $ i \in [1, |s|] $ , either $ s_i = t'_i $ , or $ p_{idx(s_i)} = idx(t'_i) $ , where $ idx(c) $ is the index of character $ c $ in Latin alphabet ( $ idx(\text{a}) = 1 $ , $ idx(\text{b}) = 2 $ , $ idx(\text{z}) = 26 $ ). For example, if $ p_1 = 2 $ , $ p_2 = 3 $ , $ p_3 = 1 $ , $ s = \text{abc} $ , $ t = \text{abcaaba} $ , then three substrings of $ t $ are occurences of $ s $ (they are $ t' = \text{abc} $ , $ t' = \text{bca} $ and $ t' = \text{aba} $ ). For each substring of $ t $ having length equal to $ |s| $ , check if it is an occurence of $ s $ .输入输出格式
输入格式
The first line contains $ 26 $ integers $ p_1 $ , $ p_2 $ , ..., $ p_{26} $ ( $ 1 \le p_i \le 26 $ , all these integers are pairwise distinct). The second line contains one string $ s $ , and the third line contains one string $ t $ ( $ 2 \le |s| \le |t| \le 2 \cdot 10^5 $ ) both consisting of lowercase Latin letters.
输出格式
Print a string of $ |t| - |s| + 1 $ characters, each character should be either 0 or 1. The $ i $ -th character should be 1 if and only if the substring of $ t $ starting with the $ i $ -th character and ending with the $ (i + |s| - 1) $ -th character (inclusive) is an occurence of $ s $ .
输入输出样例
输入样例 #1
2 3 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
abc
abcaaba
输出样例 #1
11001