307517: CF1367F2. Flying Sort (Hard Version)

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Flying Sort (Hard Version)

题意翻译

给定一个由n个正整数构成的序列(序列中可能有相同元素),现在有两种操作: 1.选取序列中的任意一项,将其放置于序列首位; 2.选取序列中的任意一项,将其放置于序列末尾; 现需要将该序列变成不下降序列,请问至少需要操作几次。 采用多组数据,数据第一行输入数据组数。

题目描述

This is a hard version of the problem. In this version, the given array can contain equal elements and the constraints on $ n $ are greater than in the easy version of the problem. You are given an array $ a $ of $ n $ integers (the given array can contain equal elements). You can perform the following operations on array elements: 1. choose any index $ i $ ( $ 1 \le i \le n $ ) and move the element $ a[i] $ to the begin of the array; 2. choose any index $ i $ ( $ 1 \le i \le n $ ) and move the element $ a[i] $ to the end of the array. For example, if $ n = 5 $ , $ a = [4, 7, 2, 2, 9] $ , then the following sequence of operations can be performed: - after performing the operation of the first type to the second element, the array $ a $ will become $ [7, 4, 2, 2, 9] $ ; - after performing the operation of the second type to the second element, the array $ a $ will become $ [7, 2, 2, 9, 4] $ . You can perform operations of any type any number of times in any order. Find the minimum total number of operations of the first and second type that will make the $ a $ array sorted in non-decreasing order. In other words, what is the minimum number of operations must be performed so the array satisfies the inequalities $ a[1] \le a[2] \le \ldots \le a[n] $ .

输入输出格式

输入格式


The first line contains a single integer $ t $ ( $ 1 \le t \le 10^4 $ ) — the number of test cases in the test. Then $ t $ test cases follow. Each test case starts with a line containing an integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the size of the array $ a $ . Then follow $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 0 \le a_i \le 10^9 $ ) — an array that needs to be sorted by the given operations. The given array can contain equal elements. The sum of $ n $ for all test cases in one test does not exceed $ 2 \cdot 10^5 $ .

输出格式


For each test case output one integer — the minimum total number of operations of the first and second type, which will make the array sorted in non-decreasing order.

输入输出样例

输入样例 #1

9
5
4 7 2 2 9
5
3 5 8 1 7
5
1 2 2 4 5
2
0 1
3
0 1 0
4
0 1 0 0
4
0 1 0 1
4
0 1 0 2
20
16 15 1 10 0 14 0 10 3 9 2 5 4 5 17 9 10 20 0 9

输出样例 #1

2
2
0
0
1
1
1
1
16

说明

In the first test case, you first need to move two 2, to the beginning of the array. Therefore, the desired sequence of operations: $ [4, 7, 2, 2, 9] \rightarrow [2, 4, 7, 2, 9] \rightarrow [2, 2, 4, 7, 9] $ . In the second test case, you need to move the 1 to the beginning of the array, and the 8 — to the end. Therefore, the desired sequence of operations: $ [3, 5, 8, 1, 7] \rightarrow [1, 3, 5, 8, 7] \rightarrow [1, 3, 5, 7, 8] $ . In the third test case, the array is already sorted.

Input

题意翻译

给定一个由n个正整数构成的序列(序列中可能有相同元素),现在有两种操作: 1.选取序列中的任意一项,将其放置于序列首位; 2.选取序列中的任意一项,将其放置于序列末尾; 现需要将该序列变成不下降序列,请问至少需要操作几次。 采用多组数据,数据第一行输入数据组数。

加入题单

上一题 下一题 算法标签: