307654: CF1391C. Cyclic Permutations
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Cyclic Permutations
题意翻译
给定一个长度为 $n$ 的排列 $p$ ,构造一个有 $n$ 个节点的图。构图方法如下: 对于每一个 $1\leq i\leq n$ ,找到最大的 $j$ 使 $1\leq j<i$ 且 $p_j>p_i$ ,在 $i$ 和 $j$ 之间连一条无向边。 对于每一个 $1\leq i\leq n$ ,找到最小的 $j$ 使 $i<j\leq n$ 且 $p_j>p_i$ ,在 $i$ 和 $j$ 之间连一条无向边。 如果找不到这样的 $j$ ,不连边。 注意:连接的节点是排列下标,并非排列的值。 例如, $n=4$ , $p=[3,1,4,2]$ ,连边是 $(1,3),(2,1),(2,3),(4,3)$ 。 **题目要求:给定 $n$ ,求出有几个长度为 $n$ 的排列,使得该排列按以上方法构造的图中有环。答案对 $10^9+7$ 取模。**题目描述
A permutation of length $ n $ is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. For example, $ [2,3,1,5,4] $ is a permutation, but $ [1,2,2] $ is not a permutation ( $ 2 $ appears twice in the array) and $ [1,3,4] $ is also not a permutation ( $ n=3 $ but there is $ 4 $ in the array). Consider a permutation $ p $ of length $ n $ , we build a graph of size $ n $ using it as follows: - For every $ 1 \leq i \leq n $ , find the largest $ j $ such that $ 1 \leq j < i $ and $ p_j > p_i $ , and add an undirected edge between node $ i $ and node $ j $ - For every $ 1 \leq i \leq n $ , find the smallest $ j $ such that $ i < j \leq n $ and $ p_j > p_i $ , and add an undirected edge between node $ i $ and node $ j $ In cases where no such $ j $ exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices. For clarity, consider as an example $ n = 4 $ , and $ p = [3,1,4,2] $ ; here, the edges of the graph are $ (1,3),(2,1),(2,3),(4,3) $ . A permutation $ p $ is cyclic if the graph built using $ p $ has at least one simple cycle. Given $ n $ , find the number of cyclic permutations of length $ n $ . Since the number may be very large, output it modulo $ 10^9+7 $ . Please refer to the Notes section for the formal definition of a simple cycle输入输出格式
输入格式
The first and only line contains a single integer $ n $ ( $ 3 \le n \le 10^6 $ ).
输出格式
Output a single integer $ 0 \leq x < 10^9+7 $ , the number of cyclic permutations of length $ n $ modulo $ 10^9+7 $ .
输入输出样例
输入样例 #1
4
输出样例 #1
16
输入样例 #2
583291
输出样例 #2
135712853