307656: CF1391E. Pairs of Pairs
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Pairs of Pairs
题意翻译
给出一张无向连通图,选择以下任意**一个**任务完成: - 找到图中一条至少包含 $\lceil \frac {n} {2} \rceil$ 个点的简单路径。 - 找到图中偶数(至少 $\lceil \frac {n} {2} \rceil$ )个点,且将它们两两配对。使满足任意两个点对包含的 $4$ 个点的导出子图至多存在 $2$ 条边。 其中,简单路径指不重复经过任意一个点的路径;导出子图指由给定点集与原图中两顶点均在给定点集中的边构成的图。 若完成任务 $1$,则输出 `PATH`,并输出简单路径包含的点数与该路径依次经过的点。 若完成任务 $2$,则输出 `PAIRING`,并输出选出的**点对**数及每一组点对。 可以证明,符合条件的一张图一定可以完成其中一个任务。题目描述
You have a simple and connected undirected graph consisting of $ n $ nodes and $ m $ edges. Consider any way to pair some subset of these $ n $ nodes such that no node is present in more than one pair. This pairing is valid if for every pair of pairs, the induced subgraph containing all $ 4 $ nodes, two from each pair, has at most $ 2 $ edges (out of the $ 6 $ possible edges). More formally, for any two pairs, $ (a,b) $ and $ (c,d) $ , the induced subgraph with nodes $ \{a,b,c,d\} $ should have at most $ 2 $ edges. Please note that the subgraph induced by a set of nodes contains nodes only from this set and edges which have both of its end points in this set. Now, do one of the following: - Find a simple path consisting of at least $ \lceil \frac{n}{2} \rceil $ nodes. Here, a path is called simple if it does not visit any node multiple times. - Find a valid pairing in which at least $ \lceil \frac{n}{2} \rceil $ nodes are paired. It can be shown that it is possible to find at least one of the two in every graph satisfying constraints from the statement.输入输出格式
输入格式
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^5 $ ). Description of the test cases follows. The first line of each test case contains $ 2 $ integers $ n, m $ ( $ 2 \le n \le 5\cdot 10^5 $ , $ 1 \le m \le 10^6 $ ), denoting the number of nodes and edges, respectively. The next $ m $ lines each contain $ 2 $ integers $ u $ and $ v $ ( $ 1 \le u, v \le n $ , $ u \neq v $ ), denoting that there is an undirected edge between nodes $ u $ and $ v $ in the given graph. It is guaranteed that the given graph is connected, and simple — it does not contain multiple edges between the same pair of nodes, nor does it have any self-loops. It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 5\cdot 10^5 $ . It is guaranteed that the sum of $ m $ over all test cases does not exceed $ 10^6 $ .
输出格式
For each test case, the output format is as follows. If you have found a pairing, in the first line output "PAIRING" (without quotes). - Then, output $ k $ ( $ \lceil \frac{n}{2} \rceil \le 2\cdot k \le n $ ), the number of pairs in your pairing. - Then, in each of the next $ k $ lines, output $ 2 $ integers $ a $ and $ b $ — denoting that $ a $ and $ b $ are paired with each other. Note that the graph does not have to have an edge between $ a $ and $ b $ ! - This pairing has to be valid, and every node has to be a part of at most $ 1 $ pair. Otherwise, in the first line output "PATH" (without quotes). - Then, output $ k $ ( $ \lceil \frac{n}{2} \rceil \le k \le n $ ), the number of nodes in your path. - Then, in the second line, output $ k $ integers, $ v_1, v_2, \ldots, v_k $ , in the order in which they appear on the path. Formally, $ v_i $ and $ v_{i+1} $ should have an edge between them for every $ i $ ( $ 1 \le i < k $ ). - This path has to be simple, meaning no node should appear more than once.
输入输出样例
输入样例 #1
4
6 5
1 4
2 5
3 6
1 5
3 5
6 5
1 4
2 5
3 6
1 5
3 5
12 14
1 2
2 3
3 4
4 1
1 5
1 12
2 6
2 7
3 8
3 9
4 10
4 11
2 4
1 3
12 14
1 2
2 3
3 4
4 1
1 5
1 12
2 6
2 7
3 8
3 9
4 10
4 11
2 4
1 3
输出样例 #1
PATH
4
1 5 3 6
PAIRING
2
1 6
2 4
PAIRING
3
1 8
2 5
4 10
PAIRING
4
1 7
2 9
3 11
4 5