307683: CF1396A. Multiples of Length
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Multiples of Length
题意翻译
给你一个长度为$n(n \le 10^5)$的序列,你要进行**恰好三次操作**,使得操作结束后序列所有数为0。 每次操作你将选择一个区间,假设区间长度为$len$,你将给这个区间的每个数加上$len$的**任意倍**。 请你给出任意一个合法方案,可以证明这个问题一定有解。题目描述
You are given an array $ a $ of $ n $ integers. You want to make all elements of $ a $ equal to zero by doing the following operation exactly three times: - Select a segment, for each number in this segment we can add a multiple of $ len $ to it, where $ len $ is the length of this segment (added integers can be different). It can be proven that it is always possible to make all elements of $ a $ equal to zero.输入输出格式
输入格式
The first line contains one integer $ n $ ( $ 1 \le n \le 100\,000 $ ): the number of elements of the array. The second line contains $ n $ elements of an array $ a $ separated by spaces: $ a_1, a_2, \dots, a_n $ ( $ -10^9 \le a_i \le 10^9 $ ).
输出格式
The output should contain six lines representing three operations. For each operation, print two lines: - The first line contains two integers $ l $ , $ r $ ( $ 1 \le l \le r \le n $ ): the bounds of the selected segment. - The second line contains $ r-l+1 $ integers $ b_l, b_{l+1}, \dots, b_r $ ( $ -10^{18} \le b_i \le 10^{18} $ ): the numbers to add to $ a_l, a_{l+1}, \ldots, a_r $ , respectively; $ b_i $ should be divisible by $ r - l + 1 $ .
输入输出样例
输入样例 #1
4
1 3 2 4
输出样例 #1
1 1
-1
3 4
4 2
2 4
-3 -6 -6