307749: CF1408D. Searchlights
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Searchlights
题意翻译
有 $n$ 个坐标分别是 $(a_1,b_1)$ , $(a_2,b_2)$ , ... , $(a_n,b_n)$ 的强盗,还有 $m$ 盏坐标分别是 $(c_1,d_1)$ , $(c_2,d_2)$ , ... , $(c_m,d_m)$ 的探照灯。 在一次移动中,你可以使每个强盗右移一个单位(即使每个强盗的 $a_i$ 加 $1$ )或使每个强盗上移一个单位(即使每个强盗的 $b_i$ 加 $1$ 。注意你应该增加所有强盗的 $a_i$ 或 $b_i$ ,你不能只增加某些点的 $a_i$ 并增加其他点的 $b_i$ 。(也就是说,一次操作中,要么使所有强盗的 $a_i$ 加 $1$ ,要么使所有强盗的 $b_i$ 加 $1$ ,修改操作是针对所有的强盗统一进行的。) 探照灯 $j$ 可以看到强盗 $i$ 当且仅当 $a_i≤c_j$ 且 $b_i≤d_j$。 如果没有探照灯能看见强盗,则成为这种强盗的布局是安全的。(即,不存在一对 $i,j$ 使得探照灯 $j$ 可以看到强盗 $i$ )。 那么如果想达到一个安全的布局,你需要执行的最小移动次数是多少呢?题目描述
There are $ n $ robbers at coordinates $ (a_1, b_1) $ , $ (a_2, b_2) $ , ..., $ (a_n, b_n) $ and $ m $ searchlight at coordinates $ (c_1, d_1) $ , $ (c_2, d_2) $ , ..., $ (c_m, d_m) $ . In one move you can move each robber to the right (increase $ a_i $ of each robber by one) or move each robber up (increase $ b_i $ of each robber by one). Note that you should either increase all $ a_i $ or all $ b_i $ , you can't increase $ a_i $ for some points and $ b_i $ for some other points. Searchlight $ j $ can see a robber $ i $ if $ a_i \leq c_j $ and $ b_i \leq d_j $ . A configuration of robbers is safe if no searchlight can see a robber (i.e. if there is no pair $ i,j $ such that searchlight $ j $ can see a robber $ i $ ). What is the minimum number of moves you need to perform to reach a safe configuration?输入输出格式
输入格式
The first line of input contains two integers $ n $ and $ m $ ( $ 1 \leq n, m \leq 2000 $ ): the number of robbers and the number of searchlight. Each of the next $ n $ lines contains two integers $ a_i $ , $ b_i $ ( $ 0 \leq a_i, b_i \leq 10^6 $ ), coordinates of robbers. Each of the next $ m $ lines contains two integers $ c_i $ , $ d_i $ ( $ 0 \leq c_i, d_i \leq 10^6 $ ), coordinates of searchlights.
输出格式
Print one integer: the minimum number of moves you need to perform to reach a safe configuration.
输入输出样例
输入样例 #1
1 1
0 0
2 3
输出样例 #1
3
输入样例 #2
2 3
1 6
6 1
10 1
1 10
7 7
输出样例 #2
4
输入样例 #3
1 2
0 0
0 0
0 0
输出样例 #3
1
输入样例 #4
7 3
0 8
3 8
2 7
0 10
5 5
7 0
3 5
6 6
3 11
11 5
输出样例 #4
6