307754: CF1408I. Bitwise Magic

Memory Limit:256 MB Time Limit:6 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Bitwise Magic

题意翻译

给定 $n,k,c$,以及长度为 $n$ 的序列 $a$(保证元素互不相同)。 操作 $k$ 次,每次随机选择一个 $a_i$,然后将其 $-1$ 对于 $x=0,1~...~2^c-1$ 输出最后序列的异或和为 $x$ 的概率。 答案对 $998244353$ 取模。 $k,c\le 16,a_i\in [k,2^c),n\le 2^c-k$

题目描述

You are given a positive integer $ k $ and an array $ a_1, a_2, \ldots, a_n $ of non-negative distinct integers not smaller than $ k $ and not greater than $ 2^c-1 $ . In each of the next $ k $ seconds, one element is chosen randomly equiprobably out of all $ n $ elements and decreased by $ 1 $ . For each integer $ x $ , $ 0 \leq x \leq 2^c - 1 $ , you need to find the probability that in the end the bitwise XOR of all elements of the array is equal to $ x $ . Each of these values can be represented as an irreducible fraction $ \frac{p}{q} $ , and you need to find the value of $ p \cdot q^{-1} $ modulo $ 998\,244\,353 $ .

输入输出格式

输入格式


The first line of input contains three integers $ n, k, c $ ( $ 1 \leq n \leq (2^c - k) $ , $ 1 \leq k \leq 16 $ , $ 1 \leq c \leq 16 $ ). The second line contains $ n $ distinct integers $ a_1, a_2, \ldots, a_n $ ( $ k \leq a_i \leq 2^c-1 $ ).

输出格式


Print $ 2^c $ integers: the probability that the bitwise XOR is equal to $ x $ in the end for $ x $ in $ \{0, 1, \ldots, 2^c-1\} $ modulo $ 998\,244\,353 $ .

输入输出样例

输入样例 #1

4 1 3
1 2 3 4

输出样例 #1

0 0 0 748683265 0 499122177 0 748683265

Input

题意翻译

给定 $n,k,c$,以及长度为 $n$ 的序列 $a$(保证元素互不相同)。 操作 $k$ 次,每次随机选择一个 $a_i$,然后将其 $-1$ 对于 $x=0,1~...~2^c-1$ 输出最后序列的异或和为 $x$ 的概率。 答案对 $998244353$ 取模。 $k,c\le 16,a_i\in [k,2^c),n\le 2^c-k$

加入题单

上一题 下一题 算法标签: