307777: CF1415D. XOR-gun
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
XOR-gun
题意翻译
给定一个长为 $n$ 的不降序列,每次操作可以任选相邻的两个数,并将这两个数替换为两个数按位异或的结果,现在需要破坏序列的不降,求最少操作次数,无解输出 $-1$题目描述
Arkady owns a non-decreasing array $ a_1, a_2, \ldots, a_n $ . You are jealous of its beauty and want to destroy this property. You have a so-called XOR-gun that you can use one or more times. In one step you can select two consecutive elements of the array, let's say $ x $ and $ y $ , remove them from the array and insert the integer $ x \oplus y $ on their place, where $ \oplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR). Note that the length of the array decreases by one after the operation. You can't perform this operation when the length of the array reaches one. For example, if the array is $ [2, 5, 6, 8] $ , you can select $ 5 $ and $ 6 $ and replace them with $ 5 \oplus 6 = 3 $ . The array becomes $ [2, 3, 8] $ . You want the array no longer be non-decreasing. What is the minimum number of steps needed? If the array stays non-decreasing no matter what you do, print $ -1 $ .输入输出格式
输入格式
The first line contains a single integer $ n $ ( $ 2 \le n \le 10^5 $ ) — the initial length of the array. The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 10^9 $ ) — the elements of the array. It is guaranteed that $ a_i \le a_{i + 1} $ for all $ 1 \le i < n $ .
输出格式
Print a single integer — the minimum number of steps needed. If there is no solution, print $ -1 $ .
输入输出样例
输入样例 #1
4
2 5 6 8
输出样例 #1
1
输入样例 #2
3
1 2 3
输出样例 #2
-1
输入样例 #3
5
1 2 4 6 20
输出样例 #3
2