307853: CF1425C. Captain of Knights

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Captain of Knights

题意翻译

定义一个函数F(X,Y),表示一个骑士从方格(1,1)到方格(X,Y) 移动的最小步数。 又有G(X,Y)=$\sum_{i=X}^N\sum_{j=Y}^MF(i,j)$ 已知X和Y,你的任务是找到G(X,Y) 当 $\left\vert a-a'\right\vert $>0$,\left\vert b-b'\right\vert$>0且$\left\vert a-a'\right\vert$+$\left\vert b-b'\right\vert$=3时,一个骑士可以从(a,b)移动至(a',b')且骑士不能走出棋盘外。 (Translated By snackboy)

题目描述

Mr. Chanek just won the national chess tournament and got a huge chessboard of size $ N \times M $ . Bored with playing conventional chess, Mr. Chanek now defines a function $ F(X, Y) $ , which denotes the minimum number of moves to move a knight from square $ (1, 1) $ to square $ (X, Y) $ . It turns out finding $ F(X, Y) $ is too simple, so Mr. Chanek defines: $ G(X, Y) = \sum_{i=X}^{N} \sum_{j=Y}^{M} F(i, j) $ Given X and Y, you are tasked to find $ G(X, Y) $ . A knight can move from square $ (a, b) $ to square $ (a', b') $ if and only if $ |a - a'| > 0 $ , $ |b - b'| > 0 $ , and $ |a - a'| + |b - b'| = 3 $ . Of course, the knight cannot leave the chessboard.

输入输出格式

输入格式


The first line contains an integer $ T $ $ (1 \le T \le 100) $ , the number of test cases. Each test case contains a line with four integers $ X $ $ Y $ $ N $ $ M $ $ (3 \leq X \leq N \leq 10^9, 3 \leq Y \leq M \leq 10^9) $ .

输出格式


For each test case, print a line with the value of $ G(X, Y) $ modulo $ 10^9 + 7 $ .

输入输出样例

输入样例 #1

2
3 4 5 6
5 5 8 8

输出样例 #1

27
70

Input

题意翻译

定义一个函数F(X,Y),表示一个骑士从方格(1,1)到方格(X,Y) 移动的最小步数。 又有G(X,Y)=$\sum_{i=X}^N\sum_{j=Y}^MF(i,j)$ 已知X和Y,你的任务是找到G(X,Y) 当 $\left\vert a-a'\right\vert $>0$,\left\vert b-b'\right\vert$>0且$\left\vert a-a'\right\vert$+$\left\vert b-b'\right\vert$=3时,一个骑士可以从(a,b)移动至(a',b')且骑士不能走出棋盘外。 (Translated By snackboy)

加入题单

上一题 下一题 算法标签: