307935: CF1438A. Specific Tastes of Andre

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Specific Tastes of Andre

题意翻译

如果一个序列的和能够被它的长度整除,我们称这个序列是不错的。如果一个序列的所有的非空子序列都是不错的,我们就称这个序列是完美的。现在有 $t$ 组询问,每组询问给定一个整数 $n$,请构造出一个由不大于 $100$ 的正整数组成的长度为 $n$ 的完美的序列。 Translated by Eason_AC 2020.11.14

题目描述

Andre has very specific tastes. Recently he started falling in love with arrays. Andre calls an nonempty array $ b $ good, if sum of its elements is divisible by the length of this array. For example, array $ [2, 3, 1] $ is good, as sum of its elements — $ 6 $ — is divisible by $ 3 $ , but array $ [1, 1, 2, 3] $ isn't good, as $ 7 $ isn't divisible by $ 4 $ . Andre calls an array $ a $ of length $ n $ perfect if the following conditions hold: - Every nonempty subarray of this array is good. - For every $ i $ ( $ 1 \le i \le n $ ), $ 1 \leq a_i \leq 100 $ . Given a positive integer $ n $ , output any perfect array of length $ n $ . We can show that for the given constraints such an array always exists. An array $ c $ is a subarray of an array $ d $ if $ c $ can be obtained from $ d $ by deletion of several (possibly, zero or all) elements from the beginning and several (possibly, zero or all) elements from the end.

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 100 $ ). Description of the test cases follows. The first and only line of every test case contains a single integer $ n $ ( $ 1 \le n \le 100 $ ).

输出格式


For every test, output any perfect array of length $ n $ on a separate line.

输入输出样例

输入样例 #1

3
1
2
4

输出样例 #1

24
19 33
7 37 79 49

说明

Array $ [19, 33] $ is perfect as all $ 3 $ its subarrays: $ [19] $ , $ [33] $ , $ [19, 33] $ , have sums divisible by their lengths, and therefore are good.

Input

题意翻译

如果一个序列的和能够被它的长度整除,我们称这个序列是不错的。如果一个序列的所有的非空子序列都是不错的,我们就称这个序列是完美的。现在有 $t$ 组询问,每组询问给定一个整数 $n$,请构造出一个由不大于 $100$ 的正整数组成的长度为 $n$ 的完美的序列。 Translated by Eason_AC 2020.11.14

加入题单

上一题 下一题 算法标签: