307941: CF1439A1. Binary Table (Easy Version)
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Binary Table (Easy Version)
题意翻译
给定一个 $n\times m$ 的 $01$ 矩阵,每次操作可以将某个 $2\times2$ 的矩阵内的 $3$ 个数取反,请在 $3\times n\times m$ 步内将矩阵变为全 $0$。题目描述
This is the easy version of the problem. The difference between the versions is in the number of possible operations that can be made. You can make hacks if and only if you solved both versions of the problem. You are given a binary table of size $ n \times m $ . This table consists of symbols $ 0 $ and $ 1 $ . You can make such operation: select $ 3 $ different cells that belong to one $ 2 \times 2 $ square and change the symbols in these cells (change $ 0 $ to $ 1 $ and $ 1 $ to $ 0 $ ). Your task is to make all symbols in the table equal to $ 0 $ . You are allowed to make at most $ 3nm $ operations. You don't need to minimize the number of operations. It can be proved that it is always possible.输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \leq t \leq 5000 $ ) — the number of test cases. The next lines contain descriptions of test cases. The first line of the description of each test case contains two integers $ n $ , $ m $ ( $ 2 \leq n, m \leq 100 $ ). Each of the next $ n $ lines contains a binary string of length $ m $ , describing the symbols of the next row of the table. It is guaranteed that the sum of $ nm $ for all test cases does not exceed $ 20000 $ .
输出格式
For each test case print the integer $ k $ ( $ 0 \leq k \leq 3nm $ ) — the number of operations. In the each of the next $ k $ lines print $ 6 $ integers $ x_1, y_1, x_2, y_2, x_3, y_3 $ ( $ 1 \leq x_1, x_2, x_3 \leq n, 1 \leq y_1, y_2, y_3 \leq m $ ) describing the next operation. This operation will be made with three cells $ (x_1, y_1) $ , $ (x_2, y_2) $ , $ (x_3, y_3) $ . These three cells should be different. These three cells should belong into some $ 2 \times 2 $ square.
输入输出样例
输入样例 #1
5
2 2
10
11
3 3
011
101
110
4 4
1111
0110
0110
1111
5 5
01011
11001
00010
11011
10000
2 3
011
101
输出样例 #1
1
1 1 2 1 2 2
2
2 1 3 1 3 2
1 2 1 3 2 3
4
1 1 1 2 2 2
1 3 1 4 2 3
3 2 4 1 4 2
3 3 4 3 4 4
4
1 2 2 1 2 2
1 4 1 5 2 5
4 1 4 2 5 1
4 4 4 5 3 4
2
1 3 2 2 2 3
1 2 2 1 2 2