308031: CF1455A. Strange Functions
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Strange Functions
题意翻译
定义一个数 $x$ 的翻转 $f(x)$ 为:将其从低位到高位写成一个新数并去掉前导零。求对于所有的 $1\le i\le x$ , $g(i)=\dfrac{i}{f(f(i))}$ 的取值有多少种。题目描述
Let's define a function $ f(x) $ ( $ x $ is a positive integer) as follows: write all digits of the decimal representation of $ x $ backwards, then get rid of the leading zeroes. For example, $ f(321) = 123 $ , $ f(120) = 21 $ , $ f(1000000) = 1 $ , $ f(111) = 111 $ . Let's define another function $ g(x) = \dfrac{x}{f(f(x))} $ ( $ x $ is a positive integer as well). Your task is the following: for the given positive integer $ n $ , calculate the number of different values of $ g(x) $ among all numbers $ x $ such that $ 1 \le x \le n $ .输入输出格式
输入格式
The first line contains one integer $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. Each test case consists of one line containing one integer $ n $ ( $ 1 \le n < 10^{100} $ ). This integer is given without leading zeroes.
输出格式
For each test case, print one integer — the number of different values of the function $ g(x) $ , if $ x $ can be any integer from $ [1, n] $ .
输入输出样例
输入样例 #1
5
4
37
998244353
1000000007
12345678901337426966631415
输出样例 #1
1
2
9
10
26