308063: CF1461C. Random Events

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Random Events

题意翻译

给定正整数 $n$ 和一个序列 $a$,这个序列 $a$ 满足所有 $i(1\leq i\leq n)$ 都只在序列 $a$ 中出现了正好 $1$ 次. 现在给定 $m$ 种操作(编号 $1$ 到 $m$),其中第 $i$ 个操作用 $2$ 个参数 $(r_i,p_i)$ 表示,含义是运行这个操作将会有 $p_i$ 的几率对 $a_1$ 到 $a_{r_i}$ 的所有元素进行升序排序(明显的,还有 $(1-p_i)$ 的几率什么也不会发生). 例如: 假设 $n=5,a=[3,2,4,5,1]$,那么操作 $(3,0.6)$ 就表示运行这个操作有 $60\%$ 的情况下序列会变为 $[2,3,4,5,1]$,而另 $40\%$ 的情况下这个序列不会变化. 给定 $n,m$ 和序列 $a$ 以及所有操作,求将所有操作按顺序运行一次后这个序列所有元素都被升序排序的几率. $T$ 组询问.你的答案误差应不超过 $10^{-6}$ . 保证所有数据有: $1\leq T\leq 100.$ $1\leq n,m\leq10^5.\sum n,\sum m\leq10^5.$ $1\leq a_i\leq n.$ $1\leq r_i\leq n,0\leq p_i\leq1.$ $p_i$ 最多会被精确到 $6$ 位小数.

题目描述

Ron is a happy owner of a permutation $ a $ of length $ n $ . A permutation of length $ n $ is an array consisting of $ n $ distinct integers from $ 1 $ to $ n $ in arbitrary order. For example, $ [2,3,1,5,4] $ is a permutation, but $ [1,2,2] $ is not a permutation ( $ 2 $ appears twice in the array) and $ [1,3,4] $ is also not a permutation ( $ n=3 $ but there is $ 4 $ in the array). ![](https://cdn.luogu.com.cn/upload/vjudge_pic/CF1461C/11faf1b639f9cfdf4aa7dcbd7d3e47925fd41e48.png)Ron's permutation is subjected to $ m $ experiments of the following type: ( $ r_i $ , $ p_i $ ). This means that elements in range $ [1, r_i] $ (in other words, the prefix of length $ r_i $ ) have to be sorted in ascending order with the probability of $ p_i $ . All experiments are performed in the same order in which they are specified in the input data. As an example, let's take a look at a permutation $ [4, 2, 1, 5, 3] $ and an experiment ( $ 3, 0.6 $ ). After such an experiment with the probability of $ 60\% $ the permutation will assume the form $ [1, 2, 4, 5, 3] $ and with a $ 40\% $ probability it will remain unchanged. You have to determine the probability of the permutation becoming completely sorted in ascending order after $ m $ experiments.

输入输出格式

输入格式


Each test contains one or more test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 100 $ ). The first line of each test case contains two integers $ n $ and $ m $ $ (1 \le n, m \le 10^5) $ — the length of the permutation and the number of experiments, respectively. The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ $ (1 \le a_i \le n) $ — contents of the permutation. The following $ m $ lines of each test case each contain an integer $ r_i $ and a real number $ p_i $ $ (1 \le r_i \le n, 0 \le p_i \le 1) $ — the length of the prefix and the probability of it being sorted. All probabilities are given with at most $ 6 $ decimal places. It is guaranteed that the sum of $ n $ and the sum of $ m $ does not exceed $ 10^5 $ ( $ \sum n, \sum m \le 10^5 $ ).

输出格式


For each test case, print a single number — the probability that after all experiments the permutation becomes sorted in ascending order. Your answer will be considered correct if its absolute or relative error does not exceed $ 10^{-6} $ . Formally, let your answer be $ a $ , and the jury's answer be $ b $ . Your answer is accepted if and only if $ \frac{|a - b|}{\max{(1, |b|)}} \le 10^{-6} $ .

输入输出样例

输入样例 #1

4
4 3
4 3 2 1
1 0.3
3 1
4 0.6
5 3
4 2 1 3 5
3 0.8
4 0.6
5 0.3
6 5
1 3 2 4 5 6
4 0.9
5 0.3
2 0.4
6 0.7
3 0.5
4 2
1 2 3 4
2 0.5
4 0.1

输出样例 #1

0.600000
0.720000
0.989500
1.000000

说明

Explanation of the first test case: It can be demonstrated that whether the final permutation is sorted or not depends solely on sorting being performed in the $ (4, 0.6) $ experiment.

Input

题意翻译

给定正整数 $n$ 和一个序列 $a$,这个序列 $a$ 满足所有 $i(1\leq i\leq n)$ 都只在序列 $a$ 中出现了正好 $1$ 次. 现在给定 $m$ 种操作(编号 $1$ 到 $m$),其中第 $i$ 个操作用 $2$ 个参数 $(r_i,p_i)$ 表示,含义是运行这个操作将会有 $p_i$ 的几率对 $a_1$ 到 $a_{r_i}$ 的所有元素进行升序排序(明显的,还有 $(1-p_i)$ 的几率什么也不会发生). 例如: 假设 $n=5,a=[3,2,4,5,1]$,那么操作 $(3,0.6)$ 就表示运行这个操作有 $60\%$ 的情况下序列会变为 $[2,3,4,5,1]$,而另 $40\%$ 的情况下这个序列不会变化. 给定 $n,m$ 和序列 $a$ 以及所有操作,求将所有操作按顺序运行一次后这个序列所有元素都被升序排序的几率. $T$ 组询问.你的答案误差应不超过 $10^{-6}$ . 保证所有数据有: $1\leq T\leq 100.$ $1\leq n,m\leq10^5.\sum n,\sum m\leq10^5.$ $1\leq a_i\leq n.$ $1\leq r_i\leq n,0\leq p_i\leq1.$ $p_i$ 最多会被精确到 $6$ 位小数.

加入题单

上一题 下一题 算法标签: