308096: CF1466E. Apollo versus Pan

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Apollo versus Pan

题意翻译

给定包含 $n$ 个元素的序列 $X=[x_1,x_2,...,x_n]$,求: $$\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}(x_i \ \operatorname{and}\ x_j)\times(x_j\ \operatorname{or}\ x_k)$$ 对 $10^9+7$ 取模的值。$T$ 组询问。 $1\leq T\leq10^3;1\leq n\leq5\times10^5;0\leq x_i\leq 2\times10^{18}.$ $\sum n\leq 5\times10^5.$

题目描述

Only a few know that Pan and Apollo weren't only battling for the title of the GOAT musician. A few millenniums later, they also challenged each other in math (or rather in fast calculations). The task they got to solve is the following: Let $ x_1, x_2, \ldots, x_n $ be the sequence of $ n $ non-negative integers. Find this value: $ $\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n (x_i \, \& \, x_j) \cdot (x_j \, | \, x_k) $ $ </p><p>Here $ \\&amp; $ denotes the <a href="https://en.wikipedia.org/wiki/Bitwise_operation#AND">bitwise and,</a> and $ | $ denotes the <a href="https://en.wikipedia.org/wiki/Bitwise_operation#OR">bitwise or.</a></p><p>Pan and Apollo could solve this in a few seconds. Can you do it too? For convenience, find the answer modulo $ 10^9 + 7$.

输入输出格式

输入格式


The first line of the input contains a single integer $ t $ ( $ 1 \leq t \leq 1\,000 $ ) denoting the number of test cases, then $ t $ test cases follow. The first line of each test case consists of a single integer $ n $ ( $ 1 \leq n \leq 5 \cdot 10^5 $ ), the length of the sequence. The second one contains $ n $ non-negative integers $ x_1, x_2, \ldots, x_n $ ( $ 0 \leq x_i < 2^{60} $ ), elements of the sequence. The sum of $ n $ over all test cases will not exceed $ 5 \cdot 10^5 $ .

输出格式


Print $ t $ lines. The $ i $ -th line should contain the answer to the $ i $ -th text case.

输入输出样例

输入样例 #1

8
2
1 7
3
1 2 4
4
5 5 5 5
5
6 2 2 1 0
1
0
1
1
6
1 12 123 1234 12345 123456
5
536870912 536870911 1152921504606846975 1152921504606846974 1152921504606846973

输出样例 #1

128
91
1600
505
0
1
502811676
264880351

Input

题意翻译

给定包含 $n$ 个元素的序列 $X=[x_1,x_2,...,x_n]$,求: $$\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}(x_i \ \operatorname{and}\ x_j)\times(x_j\ \operatorname{or}\ x_k)$$ 对 $10^9+7$ 取模的值。$T$ 组询问。 $1\leq T\leq10^3;1\leq n\leq5\times10^5;0\leq x_i\leq 2\times10^{18}.$ $\sum n\leq 5\times10^5.$

加入题单

上一题 下一题 算法标签: