308102: CF1467B. Hills And Valleys
Memory Limit:256 MB
Time Limit:1 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Hills And Valleys
题意翻译
我们将一段序列中, 满足条件 $aj>aj+1,aj>aj−1,2≤j≤n−1$ 的称为山峰 满足条件 $aj<aj+1,aj<aj−1,2≤j≤n−1$ 的称为山谷 现给定一段序列,尝试通过修改其中一个数的值,使得山峰与山谷的数量之和最小题目描述
You are given a sequence of $ n $ integers $ a_1 $ , $ a_2 $ , ..., $ a_n $ . Let us call an index $ j $ ( $ 2 \le j \le {{n-1}} $ ) a hill if $ a_j > a_{{j+1}} $ and $ a_j > a_{{j-1}} $ ; and let us call it a valley if $ a_j < a_{{j+1}} $ and $ a_j < a_{{j-1}} $ . Let us define the intimidation value of a sequence as the sum of the number of hills and the number of valleys in the sequence. You can change exactly one integer in the sequence to any number that you want, or let the sequence remain unchanged. What is the minimum intimidation value that you can achieve?输入输出格式
输入格式
The first line of the input contains a single integer $ t $ ( $ 1 \le t \le 10000 $ ) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 3\cdot10^5 $ ). The second line of each test case contains $ n $ space-separated integers $ a_1 $ , $ a_2 $ , ..., $ a_n $ ( $ 1 \le a_i \le 10^9 $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 3\cdot10^5 $ .
输出格式
For each test case, print a single integer — the minimum intimidation value that you can achieve.
输入输出样例
输入样例 #1
4
3
1 5 3
5
2 2 2 2 2
6
1 6 2 5 2 10
5
1 6 2 5 1
输出样例 #1
0
0
1
0