308105: CF1467E. Distinctive Roots in a Tree
Memory Limit:256 MB
Time Limit:3 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Distinctive Roots in a Tree
题意翻译
给定一个大小为 $n(1\leq n \leq 2\times 10^5)$ 的树,每个点有一个权值 $a_i(1\leq a_i\leq 10^9)$ ,求有多少个点 $u$ 满足从 $u$ 出发的任意一条路径上的点的权值不重复。题目描述
You are given a tree with $ n $ vertices. Each vertex $ i $ has a value $ a_i $ associated with it. Let us root the tree at some vertex $ v $ . The vertex $ v $ is called a distinctive root if the following holds: in all paths that start at $ v $ and end at some other node, all the values encountered are distinct. Two different paths may have values in common but a single path must have all distinct values. Find the number of distinctive roots in the tree.输入输出格式
输入格式
The first line of the input contains a single integer $ n $ ( $ 1 \le n \le 2\cdot10^5 $ ) — the number of vertices in the tree. The next line contains $ n $ space-separated integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ). The following $ n-1 $ lines each contain two space-separated integers $ u $ and $ v $ ( $ 1 \le u $ , $ v \le n $ ), denoting an edge from $ u $ to $ v $ . It is guaranteed that the edges form a tree.
输出格式
Print a single integer — the number of distinctive roots in the tree.
输入输出样例
输入样例 #1
5
2 5 1 1 4
1 2
1 3
2 4
2 5
输出样例 #1
3
输入样例 #2
5
2 1 1 1 4
1 2
1 3
2 4
2 5
输出样例 #2
0