308105: CF1467E. Distinctive Roots in a Tree

Memory Limit:256 MB Time Limit:3 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Distinctive Roots in a Tree

题意翻译

给定一个大小为 $n(1\leq n \leq 2\times 10^5)$ 的树,每个点有一个权值 $a_i(1\leq a_i\leq 10^9)$ ,求有多少个点 $u$ 满足从 $u$ 出发的任意一条路径上的点的权值不重复。

题目描述

You are given a tree with $ n $ vertices. Each vertex $ i $ has a value $ a_i $ associated with it. Let us root the tree at some vertex $ v $ . The vertex $ v $ is called a distinctive root if the following holds: in all paths that start at $ v $ and end at some other node, all the values encountered are distinct. Two different paths may have values in common but a single path must have all distinct values. Find the number of distinctive roots in the tree.

输入输出格式

输入格式


The first line of the input contains a single integer $ n $ ( $ 1 \le n \le 2\cdot10^5 $ ) — the number of vertices in the tree. The next line contains $ n $ space-separated integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^9 $ ). The following $ n-1 $ lines each contain two space-separated integers $ u $ and $ v $ ( $ 1 \le u $ , $ v \le n $ ), denoting an edge from $ u $ to $ v $ . It is guaranteed that the edges form a tree.

输出格式


Print a single integer — the number of distinctive roots in the tree.

输入输出样例

输入样例 #1

5
2 5 1 1 4
1 2
1 3
2 4
2 5

输出样例 #1

3

输入样例 #2

5
2 1 1 1 4
1 2
1 3
2 4
2 5

输出样例 #2

0

说明

In the first example, $ 1 $ , $ 2 $ and $ 5 $ are distinctive roots.

Input

题意翻译

给定一个大小为 $n(1\leq n \leq 2\times 10^5)$ 的树,每个点有一个权值 $a_i(1\leq a_i\leq 10^9)$ ,求有多少个点 $u$ 满足从 $u$ 出发的任意一条路径上的点的权值不重复。

加入题单

上一题 下一题 算法标签: