308123: CF1469D. Ceil Divisions
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Ceil Divisions
题意翻译
给你一个长度为 $n$ 的序列 $a$ 满足 $a_i=i$。 你每次可以进行一次如下操作: - 选择两个数 $a_x,a_y$,将 $a_x$ 修改为 $\lceil\frac{a_x}{a_y}\rceil$。 你需要在 $n+5$ 步之内将这个序列 $a$ 修改为 $n-1$ 个 $1$ 和 $1$ 个 $2$ 的序列。 输出方案,即每一步操作的 $x,y$。 注意:**你不需要最小化步数**。题目描述
You have an array $ a_1, a_2, \dots, a_n $ where $ a_i = i $ . In one step, you can choose two indices $ x $ and $ y $ ( $ x \neq y $ ) and set $ a_x = \left\lceil \frac{a_x}{a_y} \right\rceil $ (ceiling function). Your goal is to make array $ a $ consist of $ n - 1 $ ones and $ 1 $ two in no more than $ n + 5 $ steps. Note that you don't have to minimize the number of steps.输入输出格式
输入格式
The first line contains a single integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases. The first and only line of each test case contains the single integer $ n $ ( $ 3 \le n \le 2 \cdot 10^5 $ ) — the length of array $ a $ . It's guaranteed that the sum of $ n $ over test cases doesn't exceed $ 2 \cdot 10^5 $ .
输出格式
For each test case, print the sequence of operations that will make $ a $ as $ n - 1 $ ones and $ 1 $ two in the following format: firstly, print one integer $ m $ ( $ m \le n + 5 $ ) — the number of operations; next print $ m $ pairs of integers $ x $ and $ y $ ( $ 1 \le x, y \le n $ ; $ x \neq y $ ) ( $ x $ may be greater or less than $ y $ ) — the indices of the corresponding operation. It can be proven that for the given constraints it's always possible to find a correct sequence of operations.
输入输出样例
输入样例 #1
2
3
4
输出样例 #1
2
3 2
3 2
3
3 4
4 2
4 2