308156: CF1474E. What Is It?

Memory Limit:256 MB Time Limit:1 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

What Is It?

题意翻译

### 题目描述 给定一个 $n$,你需要构造一个排列 $\{p_i\}$ 和一个操作序列。 每次操作你可以交换 $i$ 和 $p_i$,并获得 $(p_i-i)^2$ 的贡献。 你需要最大化总贡献。 可以证明,操作次数 $<n$。 ### 输入格式 多组数据,每组数据给定一个 $n$ ### 输出格式 首先,第一行一个数,表示你求出的最大贡献。 然后第二行给出你构造的 $\{p_i\}$。 第三行给出一个数 $m$,表示你需要的操作次数。 接下来 $m$ 行,每行两个数,代表当前操作的 $p_i$ 和 $i$(注意,**有顺序要求** translate by peal_frog

题目描述

Lunar rover finally reached planet X. After landing, he met an obstacle, that contains permutation $ p $ of length $ n $ . Scientists found out, that to overcome an obstacle, the robot should make $ p $ an identity permutation (make $ p_i = i $ for all $ i $ ). Unfortunately, scientists can't control the robot. Thus the only way to make $ p $ an identity permutation is applying the following operation to $ p $ multiple times: - Select two indices $ i $ and $ j $ ( $ i \neq j $ ), such that $ p_j = i $ and swap the values of $ p_i $ and $ p_j $ . It takes robot $ (j - i)^2 $ seconds to do this operation. Positions $ i $ and $ j $ are selected by the robot (scientists can't control it). He will apply this operation while $ p $ isn't an identity permutation. We can show that the robot will make no more than $ n $ operations regardless of the choice of $ i $ and $ j $ on each operation.Scientists asked you to find out the maximum possible time it will take the robot to finish making $ p $ an identity permutation (i. e. worst-case scenario), so they can decide whether they should construct a new lunar rover or just rest and wait. They won't believe you without proof, so you should build an example of $ p $ and robot's operations that maximizes the answer. For a better understanding of the statement, read the sample description.

输入输出格式

输入格式


The first line of input contains a single integer $ t $ ( $ 1 \leq t \leq 10^4 $ ) — the number of test cases. Each of next $ t $ lines contains the single integer $ n $ ( $ 2 \leq n \leq 10^5 $ ) – the length of $ p $ . Note, that $ p $ is not given to you. You should find the maximum possible time over all permutations of length $ n $ . It is guaranteed, that the total sum of $ n $ over all test cases doesn't exceed $ 10^5 $ .

输出格式


For each test case in the first line, print how many seconds will the robot spend in the worst case. In the next line, print the initial value of $ p $ that you used to construct an answer. In the next line, print the number of operations $ m \leq n $ that the robot makes in your example. In the each of next $ m $ lines print two integers $ i $ and $ j $ — indices of positions that the robot will swap on this operation. Note that $ p_j = i $ must holds (at the time of operation).

输入输出样例

输入样例 #1

3
2
3
3

输出样例 #1

1
2 1
1
2 1
5
2 3 1
2
1 3
3 2
5
2 3 1
2
1 3
2 3

说明

For $ n = 2 $ , $ p $ can be either $ [1, 2] $ or $ [2, 1] $ . In the first case $ p $ is already identity, otherwise robot will make it an identity permutation in $ 1 $ second regardless of choise $ i $ and $ j $ on the first operation. For $ n = 3 $ , $ p $ can be equals $ [2, 3, 1] $ . - If robot will select $ i = 3, j = 2 $ on the first operation, $ p $ will become $ [2, 1, 3] $ in one second. Now robot can select only $ i = 1, j = 2 $ or $ i = 2, j = 1 $ . In both cases, $ p $ will become identity in one more second ( $ 2 $ seconds in total). 4. If robot will select $ i = 1, j = 3 $ on the first operation, $ p $ will become $ [1, 3, 2] $ in four seconds. Regardless of choise of $ i $ and $ j $ on the second operation, $ p $ will become identity in five seconds. We can show, that for permutation of length $ 3 $ robot will always finish all operation in no more than $ 5 $ seconds.

Input

题意翻译

### 题目描述 给定一个 $n$,你需要构造一个排列 $\{p_i\}$ 和一个操作序列。 每次操作你可以交换 $i$ 和 $p_i$,并获得 $(p_i-i)^2$ 的贡献。 你需要最大化总贡献。 可以证明,操作次数 $<n$。 ### 输入格式 多组数据,每组数据给定一个 $n$ ### 输出格式 首先,第一行一个数,表示你求出的最大贡献。 然后第二行给出你构造的 $\{p_i\}$。 第三行给出一个数 $m$,表示你需要的操作次数。 接下来 $m$ 行,每行两个数,代表当前操作的 $p_i$ 和 $i$(注意,**有顺序要求** translate by peal_frog

加入题单

上一题 下一题 算法标签: